ObjectivesTo compare the psychological responses to continuous (CT) and high-intensity interval training (HIT) sessions.MethodsFifteen men attended one CT session and one HIT session. During the first visit, the maximum heart rate, VO2Peak and respiratory compensation point (RCP) were determined through a maximal cardiopulmonary exercise test. The HIT stimulus intensity corresponded to 100% of VO2Peak, and the average intensity of both sessions was maintained at 15% below the RCP. The order of the sessions was randomized. Psychological and physiological variables were recorded before, during and after each session.ResultsThere were no significant differences between the average percentages of VO2 during the two exercise sessions (HIT: 73.3% vs. CT: 71.8%; p = 0.779). Lower responses on the feeling scale (p≤0.01) and higher responses on the felt arousal scale (p≤0.001) and the rating of perceived exertion were obtained during the HIT session. Despite the more negative feeling scale responses observed during HIT and a greater feeling of fatigue (measured by Profile of Mood States) afterwards (p<0.01), the physical activity enjoyment scale was not significantly different between the two conditions (p = 0.779).ConclusionDespite the same average intensity for both conditions, similar psychological responses under HIT and CT conditions were not observed, suggesting that the higher dependence on anaerobic metabolism during HIT negatively influenced the feeling scale responses.
Previous studies investigating the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) showed controversial results. The aim of the present study was to systematically review the literature on the effects of HIIT and MICT on affective and enjoyment responses. The PRISMA Statement and the Cochrane recommendation were used to perform this systematic review and the database search was performed using PubMed, Scopus, ISI Web of Knowledge, PsycINFO, and SPORTDiscus. Eight studies investigating the acute affective and enjoyment responses on HIIT and MICT were included in the present systematic review. The standardized mean difference (SMD) was calculated for Feeling Scale (FS), Physical Activity Enjoyment Scale (PACES) and Exercise Enjoyment Scale (EES). The MICT was used as the reference condition. The overall results showed similar beneficial effects of HIIT on PACES and EES responses compared to MICT with SMDs classified as small (PACES–SMD = 0.49, I2 = 69.3%, p = 0.001; EES–SMD = 0.48, I2 = 24.1%, p = 0.245) while for FS, the overall result showed a trivial effect (FS–SMD = 0.19, I2 = 78.9%, p<0.001). Most of the comparisons performed presented positive effects for HIIT. For the FS, six of 12 comparisons showed beneficial effects for HIIT involving normal weight and overweight-to-obese populations. For PACES, six of 10 comparisons showed beneficial effects for HIIT involving normal weight and overweight-to-obese populations. For EES, six of seven comparisons showed beneficial effects for HIIT also involving normal weight and overweight-to-obese populations. Based on the results of the present study, it is possible to conclude that HIIT exercise may be a viable strategy for obtaining positive psychological responses. Although HIIT exercise may be recommended for obtaining positive psychological responses, chronic studies should clarify the applicability of HIIT for exercise adherence.
Previous studies investigating the effects of transcranial direct current stimulation (tDCS) on muscle strength showed no consensus. Therefore, the purpose of this article was to systematically review the literature on the effects of single dose tDCS to improve muscle strength. A systematic literature search was conducted on PubMeb, ISI Web of Science, SciELO, and Scopus using search terms regarding tDCS and muscle strength. Studies were included in accordance with Population, Intervention, Comparison, Outcomes, and Setting (PICOS) including criteria. Healthy men and women, strength training practitioners or sedentary were selected. The acute effects of single dose anode stimulus of tDCS (a-tDCS) and the placebo stimulus of tDCS (sham) or no interventions were considered as an intervention and comparators, respectively. Measures related to muscle strength were analyzed. To conduct the analyses a weighted mean difference (WMD) and the standardized mean difference (SMD) were applied as appropriate. A total of 15 studies were included in this systematic review and 14 in meta-analysis. Regarding the maximal isometric voluntary contraction (MIVC), a small effect was seen between tDCS and Sham with significant difference between the conditions (SMD = 0.29; CI95% = 0.05 to 0.54; Z = 2.36; p = 0.02). The muscular endurance measured by the seconds sustaining a percentage of MIVC demonstrated a large effect between tDCS and Sham (WMD = 43.66; CI95% = 29.76 to 57.55; Z = 6.16; p < 0.001), showing an improvement in muscular endurance after exposure to tDCS. However, muscular endurance based on total work showed a trivial effect between tDCS and Sham with no significant difference (SMD = 0.22; CI95% = -0.11 to 0.54; Z = 1.32, p = 0.19). This study suggests that the use of tDCS may promote increase in maximal voluntary contraction and muscular endurance through isometric contractions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.