ObjectivesTo compare the psychological responses to continuous (CT) and high-intensity interval training (HIT) sessions.MethodsFifteen men attended one CT session and one HIT session. During the first visit, the maximum heart rate, VO2Peak and respiratory compensation point (RCP) were determined through a maximal cardiopulmonary exercise test. The HIT stimulus intensity corresponded to 100% of VO2Peak, and the average intensity of both sessions was maintained at 15% below the RCP. The order of the sessions was randomized. Psychological and physiological variables were recorded before, during and after each session.ResultsThere were no significant differences between the average percentages of VO2 during the two exercise sessions (HIT: 73.3% vs. CT: 71.8%; p = 0.779). Lower responses on the feeling scale (p≤0.01) and higher responses on the felt arousal scale (p≤0.001) and the rating of perceived exertion were obtained during the HIT session. Despite the more negative feeling scale responses observed during HIT and a greater feeling of fatigue (measured by Profile of Mood States) afterwards (p<0.01), the physical activity enjoyment scale was not significantly different between the two conditions (p = 0.779).ConclusionDespite the same average intensity for both conditions, similar psychological responses under HIT and CT conditions were not observed, suggesting that the higher dependence on anaerobic metabolism during HIT negatively influenced the feeling scale responses.
Previous studies investigating the effects of high intensity interval training (HIIT) and moderate intensity continuous training (MICT) showed controversial results. The aim of the present study was to systematically review the literature on the effects of HIIT and MICT on affective and enjoyment responses. The PRISMA Statement and the Cochrane recommendation were used to perform this systematic review and the database search was performed using PubMed, Scopus, ISI Web of Knowledge, PsycINFO, and SPORTDiscus. Eight studies investigating the acute affective and enjoyment responses on HIIT and MICT were included in the present systematic review. The standardized mean difference (SMD) was calculated for Feeling Scale (FS), Physical Activity Enjoyment Scale (PACES) and Exercise Enjoyment Scale (EES). The MICT was used as the reference condition. The overall results showed similar beneficial effects of HIIT on PACES and EES responses compared to MICT with SMDs classified as small (PACES–SMD = 0.49, I2 = 69.3%, p = 0.001; EES–SMD = 0.48, I2 = 24.1%, p = 0.245) while for FS, the overall result showed a trivial effect (FS–SMD = 0.19, I2 = 78.9%, p<0.001). Most of the comparisons performed presented positive effects for HIIT. For the FS, six of 12 comparisons showed beneficial effects for HIIT involving normal weight and overweight-to-obese populations. For PACES, six of 10 comparisons showed beneficial effects for HIIT involving normal weight and overweight-to-obese populations. For EES, six of seven comparisons showed beneficial effects for HIIT also involving normal weight and overweight-to-obese populations. Based on the results of the present study, it is possible to conclude that HIIT exercise may be a viable strategy for obtaining positive psychological responses. Although HIIT exercise may be recommended for obtaining positive psychological responses, chronic studies should clarify the applicability of HIIT for exercise adherence.
Purpose: We sought to verify if alterations in prefrontal cortex (PFC) activation and psychological responses would play along with impairments in pacing and performance of mentally fatigued cyclists.Materials and Methods: Eight recreational cyclists performed two preliminary sessions to familiarize them with the rapid visual information processing (RVP) test, psychological scales and 20 km cycling time trial (TT20km) (session 1), as well as to perform a VO2MAX test (session 2). Thereafter, they performed a TT20km either after a RVP test (30 min) or a time-matched rest control session (session 3 and 4 in counterbalanced order). Performance and psychological responses were obtained throughout the TT20km while PFC electroencephalography (EEG) was obtained at 10 and 20 km of the TT20km and throughout the RVP test. Increases in EEG theta band power indicated a mental fatigue condition. Repeated-measures mixed models design and post-hoc effect size (ES) were used in comparisons.Results: Cyclists completed the trial ~2.7% slower in mental fatigue (34.3 ± 1.3 min) than in control (33.4 ± 1.1 min, p = 0.02, very large ES), with a lower WMEAN (224.5 ± 17.9 W vs. 240.2 ± 20.9 W, respectively; p = 0.03; extremely large ES). There was a higher EEG theta band power during RVP test (p = 0.03; extremely large ES), which remained during the TT20km (p = 0.01; extremely large ES). RPE increased steeper in mental fatigue than in control, together with isolated reductions in motivation at 2th km (p = 0.04; extremely large ES), felt arousal at the 2nd and 4th km (p = 0.01; extremely large ES), and associative thoughts to exercise at the 6th and 16th km (p = 0.02; extremely large ES) of the TT20km.Conclusions: Mentally fatigued recreational cyclists showed impaired performance, altered PFC activation and faster increase in RPE during a TT20km.
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a fast spreading virus leading to the development of Coronavirus Disease-2019 (COVID-19). Severe and critical cases are characterized by damage to the respiratory system, endothelial inflammation, and multiple organ failure triggered by an excessive production of proinflammatory cytokines, culminating in the high number of deaths all over the world. Sedentarism induces worse, continuous, and progressive consequences to health. On the other hand, physical activity provides benefits to health and improves low-grade systemic inflammation. The aim of this review is to elucidate the effects of physical activity in physical fitness, immune defense, and its contribution to mitigate the severe inflammatory response mediated by SARS-CoV-2. Physical exercise is an effective therapeutic strategy to mitigate the consequences of SARS-CoV-2 infection. In this sense, studies have shown that acute physical exercise induces the production of myokines that are secreted in tissues and into the bloodstream, supporting its systemic modulatory effect. Therefore, maintaining physical activity influence balance the immune system and increases immune vigilance, and also might promote potent effects against the consequences of infectious diseases and chronic diseases associated with the development of severe forms of COVID-19. Protocols to maintain exercise practice are suggested and have been strongly established, such as home-based exercise (HBE) and outdoor-based exercise (OBE). In this regard, HBE might help to reduce levels of physical inactivity, bed rest, and sitting time, impacting on adherence to physical activity, promoting all the benefits related to exercise, and attracting patients in different stages of treatment for COVID-19. In parallel, OBE must improve health, but also prevent and mitigate COVID-19 severe outcomes in all populations. In conclusion, HBE or OBE models can be a potent strategy to mitigate the progress of infection, and a coadjutant therapy for COVID-19 at all ages and different chronic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.