We present a semi-analytical model that predicts the excitation of surface-plasmon polaritons (SPP) on a graphene sheet located in front of a sub-wavelength slit drilled in thick metal screen. We identify the signature of the SPP in the transmission, reflection, and absorption curves. Following previous literature on noble-metal plasmonics, we characterize the efficiency of excitation of SPP's in graphene computing a spatial probability density. This quantity shows the presence of plasmonics resonances dispersing with the Fermi energy, EF , as √ EF an unambiguous signature of graphene plasmons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.