All-optical addressing and coherent control of single solid-state based quantum bits is a key tool for fast and precise control of ground-state spin qubits. So far, all-optical addressing of qubits was demonstrated only in a very few systems, such as color centers and quantum dots. Here, we perform high-resolution spectroscopic of native and implanted single rare earth ions in solid, namely, a cerium ion in yttrium aluminum garnet (YAG) crystal. We find narrow and spectrally stable optical transitions between the spin sublevels of the ground and excited optical states. Utilizing these transitions we demonstrate the generation of a coherent dark state in electron spin sublevels of a single Ce^{3+} ion in YAG by coherent population trapping.
We report the efficient coherent photon scattering from a semiconductor quantum dot embedded in a pillar microcavity. We show that a surface acoustic wave can periodically modulate the energy levels of the quantum dot, but has a negligible effect on the cavity mode. The scattered narrow-band laser is converted to a pulsed single-photon stream, displaying an anti-bunching dip characteristic of single-photon emission. Multiple phonon sidebands are resolved in the emission spectrum, due to the absorption and emission of vibrational quanta in each scattering event.
Rare-earth ions doped into desired locations of optical crystals might enable
a range of novel integrated photonic devices for quantum applications. With
this aim, we have investigated the production yield of cerium and praseodymium
by means of ion implantation. As a measure, the collected fluorescence
intensity from both, implanted samples and single centers was used. With a
tailored annealing procedure for cerium, a yield up to 53% was estimated.
Praseodymium yield amounts up to 91%
A quantum computer has the potential to revolutionize multiple industries by enabling a drastic speed-up relative to classical computers for certain quantum algorithms and simulations. Linear optical quantum computing is an approach that uses photons as qubits, which are known for suffering little from decoherence. A source of multiple entangled and indistinguishable photons would be a significant step in the development of an optical quantum computer. Consequently, multiple proposals for the generation of such a stream of photons have recently been put forward. Here we introduce an alternative scheme based on a semiconductor quantum dot (QD) embedded in an optical microcavity in a magnetic field. A single charge carrier trapped in the dot has an associated spin that can be controlled by ultrashort optical pulses. Photons are sequentially generated by resonant scattering from the QD, while the charge spin is used to determine the encoding of the photons into time-bins. In this way a multi-photon entangled state can be gradually built up. With a simple optical pulse sequence we demonstrate a proof of principle experiment of our proposal by showing that the time-bin of a single photon is dependent on the measured state of the trapped charge spin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.