We have identified an easily attainable source of primitive, potentially multipotent stem cells from Wharton's jelly, the matrix of umbilical cord. Wharton's jelly cells have been propagated in culture for more than 80 population doublings. Several markers for stem cells, including c-kit (CD117), and telomerase activity are expressed in these cells. Treatment with basic fibroblast growth factor overnight and low-serum media plus butylated hydroxyanisole and dimethylsulfoxide induced Wharton's jelly cells to express a neural phenotype. Within several hours of this treatment, Wharton's jelly cells developed rounded cell bodies with multiple neurite-like extensions, similar to the morphology of neural stem cells. Neuron-specific enolase (NSE), a neural stem cell marker, was expressed in these cells, as shown by immunocytochemistry. Immunoblot analysis showed similar levels of NSE expression in both untreated and induced Wharton's jelly cells. After 3 days, the induced Wharton's jelly cells resembled bipolar or multipolar neurons, with processes that formed networks reminiscent of primary cultures of neurons. The neuron-like cells in these cultures stained positively for several neuronal proteins, including neuron-specific class III beta-tubulin, neurofilament M, an axonal growth-cone-associated protein, and tyrosine hydroxylase. Immunoblot analysis showed increasing levels of protein markers for mature neurons over time post induction. Markers for oligodendrocytes and astrocytes were also detected in Wharton's jelly cells. These exciting findings show that cells from the matrix of umbilical cord have properties of stem cells and may, thus, be a rich source of primitive cells. This study shows their capacity to differentiate into a neural phenotype in vitro.
Leon LR, Helwig BG. Heat stroke: Role of the systemic inflammatory response.
We tested the hypothesis that central angiotensin II (ANG II) administration would activate splenic sympathetic nerve discharge (SND), which in turn would alter splenic cytokine gene expression. Experiments were completed in sinoaortic nerve-lesioned, urethane-chloralose-anesthetized, splenic nerve-intact (splenic-intact) and splenic nerve-lesioned (splenic-denervated) Sprague-Dawley rats. Splenic cytokine gene expression was determined using gene-array and real-time RT-PCR analyses. Splenic SND was significantly increased after intracerebroventricular administration of ANG II (150 ng/kg, 10 microl), but not artificial cerebrospinal fluid (aCSF). Splenic mRNA expression of IL-1beta, IL-6, IL-2, and IL-16 genes was increased in ANG II-treated splenic-intact rats compared with aCSF-treated splenic-intact rats. Splenic IL-1beta, IL-2, and IL-6 gene expression responses to ANG II were significantly reduced in splenic-denervated compared with splenic-intact rats. Splenic gene expression responses did not differ significantly in ANG II-treated splenic-denervated and aCSF-treated splenic-intact rats. Splenic blood flow responses to intracerebroventricular ANG II administration did not differ between splenic-intact and splenic-denervated rats. These results provide experimental support for the hypothesis that ANG II modulates the immune system through activation of splenic SND, suggesting a novel relation between ANG II, efferent sympathetic nerve outflow, and splenic cytokine gene expression.
The typical core temperature (T(c)) profile displayed during heatstroke (HS) recovery consists of initial hypothermia followed by delayed hyperthermia. Anecdotal observations led to the conclusion that these T(c) responses represent thermoregulatory dysfunction as a result of brain damage. We hypothesized that these T(c) responses are mediated by a change in the temperature setpoint. T(c) (+/- 0.1 degrees C; radiotelemetry) of male C57BL/6J mice was monitored while they were housed in a temperature gradient with ambient temperature (T(a)) range of 20-39 degrees C to monitor behaviorally selected T(a) (T(s)) or an indirect calorimeter (T(a) = 25 degrees C) to monitor metabolism (V(O(2))) and calculate respiratory exchange ratio (RER). Responses to mild and severe HS (thermal area 249.6 +/- 18.9 vs. 299.4 +/- 19.3 degrees C.min, respectively) were examined through 48 h of recovery. An initial hypothermia following mild HS was associated with warm T(s) (approximately 32 degrees C), approximately 35% V(O(2)) decrease, and RER approximately 0.71 that indicated reliance on fatty acid oxidation. After 24 h, mild HS mice developed hyperthermia associated with warm T(s) (approximately 32 degrees C), approximately 20% V(O(2)) increase, and RER approximately 0.85. Severe HS mice appeared poikilothermic-like in the temperature gradient with T(c) similar to T(s) (approximately 20 degrees C), and these mice failed to recover from hypothermia and develop delayed hyperthermia. Cellular damage (hematoxylin and eosin staining) was undetectable in the hypothalamus or other brain regions in severe HS mice. Overall, decreases and increases in T(c) were associated with behavioral and autonomic thermoeffectors that suggest HS elicits anapyrexia and fever, respectively. Taken together, T(c) responses of mild and severe HS mice suggest a need for reinterpretation of the mechanisms of thermoregulatory control during recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.