This article emphasizes significant recent advances regarding heat stress and its impact on exercise performance, adaptations, fluid electrolyte imbalances, and pathophysiology. During exercise-heat stress, the physiological burden of supporting high skin blood flow and high sweating rates can impose considerable cardiovascular strain and initiate a cascade of pathophysiological events leading to heat stroke. We examine the association between heat stress, particularly high skin temperature, on diminishing cardiovascular/aerobic reserves as well as increasing relative intensity and perceptual cues that degrade aerobic exercise performance. We discuss novel systemic (heat acclimation) and cellular (acquired thermal tolerance) adaptations that improve performance in hot and temperate environments and protect organs from heat stroke as well as other dissimilar stresses. We delineate how heat stroke evolves from gut underperfusion/ischemia causing endotoxin release or the release of mitochondrial DNA fragments in response to cell necrosis, to mediate a systemic inflammatory syndrome inducing coagulopathies, immune dysfunction, cytokine modulation, and multiorgan damage and failure. We discuss how an inflammatory response that induces simultaneous fever and/or prior exposure to a pathogen (e.g., viral infection) that deactivates molecular protective mechanisms interacts synergistically with the hyperthermia of exercise to perhaps explain heat stroke cases reported in low-risk populations performing routine activities. Importantly, we question the "traditional" notion that high core temperature is the critical mediator of exercise performance degradation and heat stroke. Published 2011. This article is a U.S. Government work and is in the public domain in the USA.
Uncoupling protein-3 (UCP3) is a mitochondrial protein that can diminish the mitochondrial membrane potential. Levels of muscle Ucp3 mRNA are increased by thyroid hormone and fasting. Ucp3 has been proposed to influence metabolic efficiency and is a candidate obesity gene. We have produced a Ucp3 knockout mouse to test these hypotheses. The Ucp3 (؊/؊) mice had no detectable immunoreactive UCP3 by Western blotting. In mitochondria from the knockout mice, proton leak was greatly reduced in muscle, minimally reduced in brown fat, and not reduced at all in liver. These data suggest that UCP3 accounts for much of the proton leak in skeletal muscle. Despite the lack of UCP3, no consistent phenotypic abnormality was observed. The knockout mice were not obese and had normal serum insulin, triglyceride, and leptin levels, with a tendency toward reduced free fatty acids and glucose. Knockout mice showed a normal circadian rhythm in body temperature and motor activity and had normal body temperature responses to fasting, stress, thyroid hormone, and cold exposure. The base-line metabolic rate and respiratory exchange ratio were the same in knockout and control mice, as were the effects of fasting, a 3-adrenergic agonist (CL316243), and thyroid hormone on these parameters. The phenotype of Ucp1/Ucp3 double knockout mice was indistinguishable from Ucp1 single knockout mice. These data suggest that Ucp3 is not a major determinant of metabolic rate but, rather, has other functions.Human obesity is the result of energy intake greater than metabolic expenditure and is increasing in incidence (1). On an evolutionary time scale, obesity is a recent development, attributed to the interaction of predisposing genetic backgrounds with a sedentary lifestyle and an abundance of food (2, 3). Little is known about the molecular mechanisms and genes that contribute to the regulation of metabolic rate. For example, metabolic efficiency decreases with increased food intake, and it increases with lowered food intake (4), but the mechanistic details are unknown.The discovery of uncoupling protein (UCP, 1 now named UCP1) illustrated one way to regulate metabolic efficiency. UCP1 uncouples oxidative phosphorylation by allowing leakage of protons into the mitochondrial matrix without the phosphorylation of ADP (5). Heat is released because UCP1 degrades the proton gradient energy without storing it chemically or using it to perform physical work. At the whole-body level, this shows up as metabolic inefficiency. Ucp1 is expressed only in brown adipose tissue (BAT), which is a major heat-producing tissue in small mammals. In addition to cold-induced thermogenesis, BAT and UCP1 have been implicated in diet-induced thermogenesis, the increased energy expenditure that accompanies increased food intake (6). Activation of BAT and increased expression of Ucp1 cause reduced adiposity (7-9). However, BAT is present in only small amounts in large mammals, so its role in regulating energy homeostasis in adult humans is problematic (10).Interest in UCPs incr...
Heat stroke is a life-threatening condition clinically diagnosed as a severe elevation in body temperature with central nervous system dysfunction that often includes combativeness, delirium, seizures, and coma. Classic heat stroke primarily occurs in immunocompromised individuals during annual heat waves. Exertional heat stroke is observed in young fit individuals performing strenuous physical activity in hot or temperature environments. Long-term consequences of heat stroke are thought to be due to a systemic inflammatory response syndrome. This article provides a comprehensive review of recent advances in the identification of risk factors that predispose to heat stroke, the role of endotoxin and cytokines in mediation of multi-organ damage, the incidence of hypothermia and fever during heat stroke recovery, clinical biomarkers of organ damage severity, and protective cooling strategies. Risk factors include environmental factors, medications, drug use, compromised health status, and genetic conditions. The role of endotoxin and cytokines is discussed in the framework of research conducted over 30 years ago that requires reassessment to more clearly identify the role of these factors in the systemic inflammatory response syndrome. We challenge the notion that hypothalamic damage is responsible for thermoregulatory disturbances during heat stroke recovery and highlight recent advances in our understanding of the regulated nature of these responses. The need for more sensitive clinical biomarkers of organ damage is examined. Conventional and emerging cooling methods are discussed with reference to protection against peripheral organ damage and selective brain cooling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.