We have determined complete gene sequences encoding the largest subunit of the RNA polymerase II (RBP1) from two Microsporidia, Vairimorpha necatrix and Nosema locustae. Phylogenetic analyses of these and other RPB1 sequences strongly support the notion that Microsporidia are not early-diverging eukaryotes but instead are specifically related to Fungi. Our reexamination of elongation factors EF-1␣ and EF-2 sequence data that had previously been taken as support for an early (Archezoan) divergence of these amitochondriate protists show such support to be weak and likely caused by artifacts in phylogenetic analyses. These EF data sets are, in fact, not inconsistent with a Microsporidia ؉ Fungi relationship. In addition, we show that none of these proteins strongly support a deep divergence of Parabasalia and Metamonada, the other amitochondriate protist groups currently thought to compose early branches. Thus, the phylogenetic placement among eukaryotes for these protist taxa is in need of further critical examination.
Microsporidia are small (1-20 micron) obligate intracellular parasites of a variety of eukaryotes, and they are serious opportunistic pathogens of immunocompromised patients [1]. Microsporidia are often assigned to the first branch in gene trees of eukaryotes [2,3], and are reported to lack mitochondria [2,4]. Like diplomonads and trichomonads, microsporidia are hypothesised to have diverged from the main eukaryotic stock prior to the event that led to the mitochondrion endosymbiosis [2,4]. They have thus assumed importance as putative relics of premitochondrion eukaryote evolution. Recent data have now revealed that diplomonads and trichomonads contain genes that probably originated from the mitochondrion endosymbiont [5-9], leaving microsporidia as chief candidates for an extant primitively amitochondriate eukaryote group. We have now identified a gene in the microsporidium Vairimorpha necatrix that appears to be orthologous to the eukaryotic (symbiont-derived) Hsp70 gene, the protein product of which normally functions in mitochondria. The simplest interpretation of our data is that microporidia have lost mitochondria while retaining genetic evidence of their past presence. This strongly suggests that microsporidia are not primitively amitochondriate and makes feasible an evolutionary scenario whereby all extant eukaryotes share a common ancestor which contained mitochondria.
The events that occur after the binding of the enzymatic E colicins to Escherichia coli BtuB receptors that lead to translocation of the cytotoxic domain into the periplasmic space and, ultimately, cell killing are poorly understood. It has been suggested that unfolding of the coiled-coil BtuB receptor binding domain of the E colicins may be an essential step that leads to the loss of immunity protein from the colicin and immunity protein complex and then triggers the events of translocation. We introduced pairs of cysteine mutations into the receptor binding domain of colicin E9 (ColE9) that resulted in the formation of a disulfide bond located near the middle or the top of the R domain. After dithiothreitol reduction, the ColE9 protein with the mutations L359C and F412C (ColE9 L359C-F412C) and the ColE9 protein with the mutations Y324C and L447C (ColE9 Y324C-L447C) were slightly less active than equivalent concentrations of ColE9. On oxidation with diamide, no significant biological activity was seen with the ColE9 L359C-F412C and the ColE9 Y324C-L447C mutant proteins; however diamide had no effect on the activity of ColE9. The presence of a disulfide bond was confirmed in both of the oxidized, mutant proteins by matrix-assisted laser desorption ionization-time of flight mass spectrometry. The loss of biological activity of the disulfide-containing mutant proteins was not due to an indirect effect on the properties of the translocation or DNase domains of the mutant colicins. The data are consistent with a requirement for the flexibility of the coiled-coil R domain after binding to BtuB.
ColE9 is a plasmid-encoded protein antibiotic produced by Escherichia coli and closely related species that kills E. coli cells expressing the BtuB receptor. The 15-kDa cytotoxic DNase domain of colicin E9 preferentially nicks double-stranded DNA at thymine bases and shares a common active-site structural motif with a variety of other nucleases, including the H-N-H homing endonucleases and the apoptotic CAD proteins of eukaryotes. Studies of the mechanism by which the DNase domain of ColE9 reaches the cytoplasm of E. coli cells are limited by the lack of a rapid, sensitive assay for the DNA damage that results. Here, we report the development of an SOS promoter-lux fusion reporter system for monitoring DNA damage in colicin-treated cells and illustrate the value of this reporter system in experiments that probe the mechanism and time required for the DNase domain of colicin E9 to reach the cytoplasm.Colicins are plasmid-encoded antibacterial proteins that are secreted as part of the stress response system of Escherichia coli to kill other bacteria. They are classified into groups on the basis of the cell surface receptor on the target cells to which they bind. The E colicins all bind to the product of the chromosomal btuB gene, an outer membrane protein that is an essential component of the high-affinity transport system for vitamin B 12 in E. coli, and they require the outer membrane protein OmpF as a coreceptor (13). Based on immunity tests, the E group colicins have been subdivided into nine types, ColE1 to ColE9. These fall into one of three cytotoxic classes: the membrane-depolarizing, or pore-forming, agent ColE1 (7); the DNases, colicins E2, E7, E8, and E9 (6); and the RNases, colicins E3, E4, E5, and E6 (17, 20). Cells producing enzymatic colicins protect themselves against the action of their own toxin by coproducing a tightly binding, inactivating immunity protein. The resulting colicin-immunity complex is released from the cells, and the immunity protein is lost from the complex upon entry into susceptible cells (13).In common with most colicins, the enzymatic E-type colicins consist of three functional domains. The killing activity is contained in the C-terminal domain, which can be isolated as a stable and active protein (11,14,21,31). The central section contains the receptor-binding (R) domain, while the N-terminal T domain is responsible for translocation of the cytotoxic domain into the cytoplasm of the target cell (1, 10). After binding to their outer membrane receptors, group A colicins, such as colicin E9, are translocated across the membrane in a process that is mediated by the tol system (1, 10). Translocation requires a specific pentapeptide sequence in the T domain, known initially as the TolA box, which is now known to interact with TolB. ColE9 contains a TolB box from residues 35 to 39, DGSGW, which has been shown by mutagenesis to be important for its killing action and for the interaction of the T domain with the translocation protein TolB. The mechanism by which TolB recognizes and s...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.