Gram-negative bacteria inhabit a broad range of ecological niches. For Escherichia coli, this includes river water as well as humans and animals where it can be both a commensal and a pathogen1–3. Intricate regulatory mechanisms ensure bacteria have the right complement of β-barrel outer membrane proteins (OMPs) to enable adaptation to a particular habitat4,5. Yet no mechanism is known for replacing OMPs in the outer membrane (OM), a biological enigma further confounded by the lack of an energy source and the high stability6 and abundance of OMPs5. Here, we uncover the process underpinning OMP turnover in E. coli and show it to be passive and binary in nature wherein old OMPs are displaced to the poles of growing cells as new OMPs take their place. Using fluorescent colicins as OMP-specific probes, in combination with ensemble and single-molecule fluorescence microscopy in vivo and in vitro, as well as molecular dynamics (MD) simulations, we established the mechanism for binary OMP partitioning. OMPs clustered to form islands of ~0.5 μm diameter where their diffusion was restricted by promiscuous interactions with other OMPs. OMP islands were distributed throughout the cell and contained the Bam complex, which catalyses the insertion of OMPs in the OM7,8. However, OMP biogenesis occurred as a gradient that was highest at mid-cell but largely absent at cell poles. The cumulative effect is to push old OMP islands towards the poles of growing cells, leading to a binary distribution when cells divide. Hence the OM of a Gram-negative bacterium is a spatially and temporally organised structure and this organisation lies at the heart of how OMPs are turned over in the membrane.
Small molecules are known to stabilise membrane proteins and to modulate function and oligomeric state, but their identity is often hard to define. Here we develop and apply a high-resolution, Orbitrap mass spectrometer for intact membrane protein-ligand complexes. Using this platform we resolve the complexity of multiple binding events, quantify small molecule binding and reveal selectivity for endogenous lipids that differ only in acyl chain length.
SignificanceThe outer membrane (OM) excludes antibiotics such as vancomycin that kill gram-positive bacteria, and so is a major contributor to multidrug resistance in gram-negative bacteria. Yet, the OM is readily bypassed by protein bacteriocins, which are toxins released by bacteria to kill their neighbors during competition for resources. Discovered over 60 y ago, it has been a mystery how these proteins cross the OM to deliver their toxic payload. We have discovered how the bacteriocin pyocin S2 (pyoS2), which degrades DNA, enters Pseudomonas aeruginosa cells. PyoS2 tricks the iron transporter FpvAI into transporting it across the OM by a process that is remarkably similar to that used by its endogenous ligand, the siderophore ferripyoverdine.
Porins are β-barrel outer membrane proteins through which small solutes and metabolites diffuse that are also exploited during cell death. We have studied how the bacteriocin colicin E9 (ColE9) assembles a cytotoxic translocon at the surface of Escherichia coli that incorporates the trimeric porin OmpF. Formation of the translocon involved ColE9’s unstructured N-terminal domain threading in opposite directions through two OmpF subunits, capturing its target TolB on the other side of the membrane in a fixed orientation that triggers colicin import. Thus an intrinsically disordered protein can tunnel through the narrow pores of an oligomeric porin to deliver an epitope signal to the cell to initiate cell death.
The PpL-Fab complex shows the first interaction of a bacterial virulence factor with a Fab light chain outside the conventional combining site. Structural comparison with two other bacterial proteins interacting with the Fab heavy chain shows that PpL, structurally homologous to streptococcal SpG domains, shares with the latter a similar binding mode. These two bacterial surface proteins interact with their respective immunoglobulin regions through a similar beta zipper interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.