Transactional memory is a promising mechanism for synchronizing concurrent programs that eliminates locks at the expense of hardware complexity. Transactional memory is a hard feature to verify. First, transactions comprise several instructions that must be observed as a single global atomic operation. In addition, there are many reasons a transaction can fail. This results in a high level of non-determinism which must be tamed by the verification methodology. This paper describes the innovation that was applied to tools and methodology in pre-silicon simulation, acceleration and post-silicon in order to verify transactional memory in the IBM POWER8 processor core.
This paper addresses the challenges of minimizing the time and resources required to validate the changes between two Hardware (HW) model iterations of the same design. It introduces CLTV (Coverage Learned Targeted Validation), an automatic framework which learns during the verification process of the HW and uses the learned information to target the areas of the design that are affected by the incremental HW model iterations.Our paper defines new concepts, presents our implementation of the supporting algorithms, and shows actual results on an IBM POWER8 processor with outstanding results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.