Clopidogrel pharmacotherapy is associated with substantial interindividual variability in clinical response, which can translate into an increased risk of adverse outcomes. Clopidogrel, a recognized substrate of hepatic carboxylesterase 1 (CES1), undergoes extensive hydrolytic metabolism in the liver. Significant interindividual variability in the expression and activity of CES1 exists, which is attributed to both genetic and environmental factors. We determined whether CES1 inhibition and CES1 genetic polymorphisms would significantly influence the biotransformation of clopidogrel and alter the formation of the active metabolite. Coincubation of clopidogrel with the CES1 inhibitor bis(4-nitrophenyl) phosphate in human liver s9 fractions significantly increased the concentrations of clopidogrel, 2-oxo-clopidogrel, and clopidogrel active metabolite, while the concentrations of all formed carboxylate metabolites were significantly decreased. As anticipated, clopidogrel and 2-oxoclopidogrel were efficiently hydrolyzed by the cell s9 fractions prepared from wild-type CES1 transfected cells. The enzymatic activity of the CES1 variants G143E and D260fs were completely impaired in terms of catalyzing the hydrolysis of clopidogrel and 2-oxo-clopidogrel. However, the natural variants G18V, S82L, and A269S failed to produce any significant effect on CES1-mediated hydrolysis of clopidogrel or 2-oxo-clopidogrel. In summary, deficient CES1 catalytic activity resulting from CES1 inhibition or CES1 genetic variation may be associated with higher plasma concentrations of clopidogrel-active metabolite, and hence may enhance antiplatelet activity. Additionally, CES1 genetic variants have the potential to serve as a biomarker to predict clopidogrel response and individualize clopidogrel dosing regimens in clinical practice.
Milk thistle (Silybum marianum) extracts, one of the most widely used dietary supplements, contain a mixture of six major flavonolignans (silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin) and other components. However, the pharmacokinetics of the free individual flavonolignans have been only partially investigated in humans. Furthermore, antioxidant effects of the extract, which may underlie the basis of many therapeutic effects, have not been thoroughly assessed. The present study evaluated the pharmacokinetics of the six major flavonolignans in healthy volunteers receiving single doses of either one (175 mg), two (350 mg), or three (525 mg) milk thistle capsule(s) on three separate study visits. Additionally, the steady-state pharmacokinetic parameters were determined after the subjects were administered one capsule three times daily for 28 consecutive days. Our results demonstrated that all six flavonolignans were rapidly absorbed and eliminated. In order of abundance, the exposure to free flavonolignans was greatest for silybin A followed by silybin B, isosilybin B, isosilybin A, silychristin, and silydianin. The systemic exposure to these compounds appeared linear and dose proportional. The disposition of flavonolignans was stereoselective, as evidenced by the apparent clearance of silybin B, which was significantly greater than silybin A, whereas the apparent clearance of isosilybin B was significantly lower than isosilybin A. The concentrations of urinary 8-epi-prostaglandin F2a, a commonly used biomarker of oxidative status in humans, were considerably decreased in study subjects after a 28-day exposure to the extract (1.3 6 0.9 versus 0.8 6 0.9 ng/mg creatinine) but failed to reach statistical significance (P = 0.076).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.