The zero forcing number Z(G), which is the minimum number of vertices in a zero forcing set of a graph G, is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by G. It is shown that for a connected graph of order at least two, no vertex is in every zero forcing set. The positive semidefinite zero forcing number Z+(G) is introduced, and shown to be equal to |G| − OS(G), where OS(G) is the recently defined ordered set number that is a lower bound for minimum positive semidefinite rank. The positive semidefinite zero forcing number is applied to the computation of positive semidefinite minimum rank of certain graphs. An example of a graph for which the real positive symmetric semidefinite minimum rank is greater than the complex Hemitian positive semidefinite minimum rank is presented.
Abstract. Tree-width, and variants that restrict the allowable tree decompositions, play an important role in the study of graph algorithms and have application to computer science. The zero forcing number is used to study the maximum nullity/minimum rank of the family of symmetric matrices described by a graph. We establish relationships between these parameters, including several Colin de Verdière type parameters, and introduce numerous variations, including the minor monotone floors and ceilings of some of these parameters. This leads to new graph parameters and to new characterizations of existing graph parameters. In particular, tree-width, largeur d'arborescence, path-width, and proper path-width are each characterized in terms of a minor monotone floor of a certain zero forcing parameter defined by a color change rule.
The sign-solvability of a linear system implies that the signs of the entries of the solution are determined solely on the basis of the signs of the coefficients of the system. That it might be worthwhile and possible to investigate such linear systems was recognised by Samuelson in his classic book Foundations of Economic Analysis. Sign-solvability is part of a larger study which seeks to understand the special circumstances under which an algebraic, analytic or geometric property of a matrix can be determined from the combinatorial arrangement of the positive, negative and zero elements of the matrix. The large and diffuse body of literature connected with sign-solvability is presented as a coherent whole for the first time in this book, displaying it as a beautiful interplay between combinatorics and linear algebra. One of the features of this book is that algorithms that are implicit in many of the proofs have been explicitly described and their complexity has been commented on.
For a given graph G and an associated class of real symmetric matrices whose offdiagonal entries are governed by the adjacencies in G, the collection of all possible spectra for such matrices is considered. Building on the pioneering work of Colin de Verdière in connection with the Strong Arnold Property, two extensions are devised that target a better understanding of all possible spectra and their associated multiplicities. These new properties are referred to as the Strong Spectral Property and the Strong Multiplicity Property. Finally, these ideas are applied to the minimum number of distinct eigenvalues associated with G, denoted by q(G). The graphs for which q(G) is at least the number of vertices of G less one are characterized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.