It is well recognized that exposure to fine particulate matter (PM2.5) affects health adversely, yet few studies from South America have documented such associations due to the sparsity of PM2.5 measurements. Lima’s topography and aging vehicular fleet results in severe air pollution with limited amounts of monitors to effectively quantify PM2.5 levels for epidemiologic studies. We developed an advanced machine learning model to estimate daily PM2.5 concentrations at a 1 km2 spatial resolution in Lima, Peru from 2010 to 2016. We combined aerosol optical depth (AOD), meteorological fields from the European Centre for Medium-Range Weather Forecasts (ECMWF), parameters from the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem), and land use variables to fit a random forest model against ground measurements from 16 monitoring stations. Overall cross-validation R2 (and root mean square prediction error, RMSE) for the random forest model was 0.70 (5.97 μg/m3). Mean PM2.5 for ground measurements was 24.7 μg/m3 while mean estimated PM2.5 was 24.9 μg/m3 in the cross-validation dataset. The mean difference between ground and predicted measurements was −0.09 μg/m3 (Std.Dev. = 5.97 μg/m3), with 94.5% of observations falling within 2 standard deviations of the difference indicating good agreement between ground measurements and predicted estimates. Surface downwards solar radiation, temperature, relative humidity, and AOD were the most important predictors, while percent urbanization, albedo, and cloud fraction were the least important predictors. Comparison of monthly mean measurements between ground and predicted PM2.5 shows good precision and accuracy from our model. Furthermore, mean annual maps of PM2.5 show consistent lower concentrations in the coast and higher concentrations in the mountains, resulting from prevailing coastal winds blown from the Pacific Ocean in the west. Our model allows for construction of long-term historical daily PM2.5 measurements at 1 km2 spatial resolution to support future epidemiological studies.
The literature shows associations between maternal exposures to PM 2.5 and adverse pregnancy outcomes. There are few data from Latin America. We have examined PM 2.5 and pregnancy outcomes in Lima. The study included 123,034 births from 2012 to 2016, at three public hospitals. We used estimated daily PM 2.5 from a newly created model developed using ground measurements, satellite data, and a chemical transport model. Exposure was assigned based on district of residence (n = 39). Linear and logistic regression analyzes were used to estimate the associations between air pollution exposure and pregnancy outcomes. Increased exposure to PM 2.5 during the entire pregnancy and in the first trimester was inversely associated with birth weight. We found a decrease of 8.13 g (−14.0; −1.84) overall and 18.6 g (−24.4, −12.8) in the first trimester, for an interquartile range (IQR) increase (9.2 µg/m 3) in PM 2.5. PM 2.5 exposure was positively associated with low birth weight at term (TLBW) during entire pregnancy (
Background In the past decades, climate change has been impacting human lives and health via extreme weather and climate events and alterations in labour capacity, food security, and the prevalence and geographical distribution of infectious diseases across the globe. Climate change and health indicators (CCHIs) are workable tools designed to capture the complex set of interdependent interactions through which climate change is affecting human health. Since 2015, a novel sub-set of CCHIs, focusing on climate change impacts, exposures, and vulnerability indicators (CCIEVIs) has been developed, refined, and integrated by Working Group 1 of the “Lancet Countdown: Tracking Progress on Health and Climate Change”, an international collaboration across disciplines that include climate, geography, epidemiology, occupation health, and economics. Discussion This research in practice article is a reflective narrative documenting how we have developed CCIEVIs as a discrete set of quantifiable indicators that are updated annually to provide the most recent picture of climate change’s impacts on human health. In our experience, the main challenge was to define globally relevant indicators that also have local relevance and as such can support decision making across multiple spatial scales. We found a hazard, exposure, and vulnerability framework to be effective in this regard. We here describe how we used such a framework to define CCIEVIs based on both data availability and the indicators’ relevance to climate change and human health. We also report on how CCIEVIs have been improved and added to, detailing the underlying data and methods, and in doing so provide the defining quality criteria for Lancet Countdown CCIEVIs. Conclusions Our experience shows that CCIEVIs can effectively contribute to a world-wide monitoring system that aims to track, communicate, and harness evidence on climate-induced health impacts towards effective intervention strategies. An ongoing challenge is how to improve CCIEVIs so that the description of the linkages between climate change and human health can become more and more comprehensive.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.