Cyclophanes are a venerable class of macrocyclic and/or cage compounds that often feature high strain, unusual conformations and quite surprising properties, many of which are legendary in physical organic chemistry. However, the discovery of new, diverse cyclophanes and derivatives has been hindered by syntheses that are traditionally low-yielding, requiring long reaction times, laborious purification steps and often extreme conditions. Herein, we demonstrate a new self-assembly route to a variety of discrete cyclic and caged disulfide structures, which can then be kinetically captured upon sulfur extrusion at room temperature to give a diversity of new thioether (hetera)cyclophanes in high yield. In addition to the synthesis of novel macrocycles (dimers through hexamers), this process provides an improved route to a known macrobicyclic trithiacyclophane. This technique also enables the facile isolation of a tetrahedral macrotricyclic tetrathiacyclophane in two steps at an ambient temperature.
The combinatorial synthesis of a new library of tetrameric peptoid ligands is introduced, enabling coordination and characterization of f-block metals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.