The implementation of control algorithms oriented to robotic assistance and rehabilitation tasks for people with motor disabilities has been of increasing interest in recent years. However, practical implementation cannot be carried out unless one has the real robotic system availability. To overcome this drawback, this article presents the development of an interactive virtual reality (VR)-based framework that allows one to simulate the execution of rehabilitation tasks and robotic assistance through a robotic standing wheelchair. The virtual environment developed considers the kinematic and dynamic model of the standing human–wheelchair system with a displaced center of mass, since it can be displaced for different reasons, e.g.,: bad posture, limb amputations, obesity, etc. The standing wheelchair autonomous control scheme has been implemented through the Full Simulation (FS) and Hardware in the Loop (HIL) techniques. Finally, the performance of the virtual control schemes has been shown by means of several experiments based on robotic assistance and rehabilitation for people with motor disabilities.
Transport, rescue, search, surveillance, and disaster relief tasks are some applications that can be developed with unmanned aerial vehicles (UAVs), where accurate trajectory tracking is a crucial property to operate in a cluttered environment or under uncertainties. However, this is challenging due to high nonlinear dynamics, system constraints, and uncertainties presented in cluttered environments. Hence, uncertainties in the form of unmodeled dynamics, aerodynamic effects, and external disturbances such as wind can produce unstable feedback control schemes, introducing significant positional tracking errors. This work presents a detailed comparative study between controllers such as nonlinear model predictive control (NMPC) and non-predictive baseline feedback controllers, with particular attention to tracking accuracy and computational efficiency. The development of the non-predictive feedback controller schemes was divided into inverse differential kinematics and inverse dynamic compensation of the aerial vehicle. The design of the two controllers uses the mathematical model of UAV and nonlinear control theory, guaranteeing a low computational cost and an asymptotically stable algorithm. The NMPC formulation was developed considering system constraints, where the simplified dynamic model was included; additionally, the boundaries in control actions and a candidate Lyapunov function guarantees the stability of the control structure. Finally, this work uses the commercial simulator DJI brand and DJI Matrice 100 UAV in real-world experiments, where the NMPC shows a reduction in tracking error, indicating the advantages of this formulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.