Individuals with chronic excessive alcohol ingestion are put at the risk of acute and chronic pancreatitis. Underlying molecular mechanisms are unknown. Differential gene expression in the pancreas was profiled using mRNA differential display by comparison between control and ethanol-consuming rats. Male Wistar rats were fed with diets containing 6.7% (vol/vol) ethanol for 4 wk. A cDNA tag that was overexpressed in the pancreas of rats fed ethanol was isolated. A 723-bp cDNA was cloned from a rat pancreatic cDNA library, which encodes a novel rat mitochondrial ATP synthase subunit 9, isoform 3 (ATP5G3), which is homologous to a human ATP5G3 gene. Real-time PCR demonstrated that all three nuclear gene isoforms (ATP5G1, ATP5G2, and ATP5G3) were consistently upregulated in the pancreas of alcohol-consuming rats, parallel with mitochondrial injury. The cellular response to mitochondrial damage and metabolic stress may reflect an adaptive process for mitochondrial repair in pancreatic acinar cells during chronic ethanol ingestion.
Our results demonstrate that chronic ethanol consumption induced expression of FAEE-related genes in the pancreas and liver. This upregulation may be a central mechanism leading to acinar cell injury.
The primary factors that predispose humans to the development of alcoholic pancreatitis are unknown. One of the earliest observations in humans in whom this disease develops is pancreatic hypersecretion caused by unknown mechanisms. Messenger RNA (mRNA) differential display was performed in a rat model to investigate the molecular mechanisms associated with ethanol-induced pancreatic hypersecretion. Male Wistar rats were pair-fed Lieber-DeCarli diets with or without ethanol for 7 days or 4 weeks. Total RNA was extracted from the pancreas and its neurohormonal control sites. Differentially expressed complementary DNA (cDNA) tags were isolated, cloned, and sequenced. One 248-bp cDNA was consistently and strongly induced in the pancreata of rats fed ethanol for 4 weeks. The sequence was highly homologous to both rat pancreatic monitor peptide (MP) and pancreatic secretory trypsin inhibitor (PSTI-56), also known as serine protease inhibitor, Kazal type 1 (SPINK1). Confirmatory reverse-transcription-polymerase chain reaction showed that PSTI-56 expression remained unchanged, whereas MP mRNA levels were elevated more than four times in the pancreata of ethanol-fed rats. These results indicate that long-term ethanol ingestion increases MP mRNA levels in the rat pancreas. Because MP stimulates cholecystokinin release and cholecystokinin is an important stimulant of pancreatic secretion, the enhanced MP gene expression may contribute to pancreatic hypersecretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.