Purpose: To implement and evaluate a novel and fast method for proton range verification by using a planar scintillator and step wedge. Methods: A homogenous proton pencil beam plan with 35 energies was designed and delivered to a 2D flat scintillator with a step wedge. The measurement was repeated 15 times (3 different days, 5 times per day). The scintillator image was smoothed, the Bragg peak and distal fall off regions were fitted by an analytical equation, and the proton range was calculated using simple trigonometry. The accuracy of this method was verified by comparing the measured ranges to those obtained using an ionization chamber and a scanning water tank, the gold standard. The reproducibility was evaluated by comparing the ranges over 15 repeated measurements. The sensitivity was evaluated by delivering to same beam to the system with a film inserted under the wedge. Results: The range accuracy of all 35 proton energies measured over 3 days was within 0.2 mm. The reproducibility in 15 repeated measurements for all 35 proton ranges was AE0.045 mm. The sensitivity to range variation is 0.1 mm for the worst case. This efficient procedure permits measurement of 35 proton ranges in less than 3 min. The automated data processing produces results immediately. The setup of this system took less than 5 min. The time saving by this new method is about two orders of magnitude when compared with the time for water tank range measurements. Conclusions: A novel method using a scintillator with a step wedge to measure the proton range was implemented and evaluated. This novel method is fast and sensitive, and the proton range measured by this method was accurate and highly reproducible.
Purpose Patient‐Specific Quality Assurance (PSQA) measurement analysis depends on generating metrics representative of calculation and measurement agreement. Considering the heightened capability of discrete spot scanning protons to modulate individual dose voxels, a dose plane comparison approach that maintained all of the capabilities of the well‐established γ test, but that also provided a more intuitive error parameterization, was desired. Methods Analysis was performed for 300 dose planes compared by searching all calculated points within a fixed radius around each measured pixel to determine the dose deviation. Dose plane agreement is reported as the dose difference minimum (DDM) within an empirically established search radius: ΔDmin(r). This per‐pixel metric is aggregated into a histogram binned by dose deviation. Search‐radius criteria were based on a weighted‐beamlet 3σ spatial deviation from imaging isocenter. Equipment setup error was mitigated during analysis using tracked image registration, ensuring beamlet deviations to be the dominant source of spatial error. The percentage of comparison points with <3% dose difference determined pass rate. Results The mean beamlet radial deviation was 0.38mm from x‐ray isocenter, with a standard deviation of 0.19mm, such that 99.9% of relevant pencil beams were within 1 mm of nominal. The dose‐plane comparison data showed no change in passing rate between a 3%/1mm ΔDmin(r) analysis (97.6 +/‐ 3.6%) and a 3%/2mm γ test (97.7 +/‐ 3.2%). Conclusions PSQA dose‐comparison agreements corresponding to a search radius outside of machine performance limits are likely false positives. However, the elliptical shape of the γ test is too dose‐restrictive with a spatial‐error threshold set at 1 mm. This work introduces a cylindrical search shape, proposed herein as more relevant to plan quality, as part of the new DDM planar‐dose comparison algorithm. DDM accepts all pixels within a given dose threshold inside the search radius, and carries forward plan‐quality metrics in a straightforward manner for evaluation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.