Social norms regulate and coordinate most aspects of human social life, yet they emerge and change as a result of individual behaviors, beliefs, and expectations. A satisfactory account for the evolutionary dynamics of social norms, therefore, has to link individual beliefs and expectations to population-level dynamics, where individual norms change according to their consequences for individuals. Here, we present a model of evolutionary dynamics of social norms that encompasses this objective and addresses the emergence of social norms. In this model, a norm is a set of behavioral prescriptions and a set of environmental descriptions that describe the expected behaviors of those with whom the norm holder will interact. These prescriptions and descriptions are functions of exogenous environmental events. These events have no intrinsic meaning or effect on the payoffs to individuals, yet beliefs/superstitions regarding them can effectuate coordination. Although a norm’s prescriptions and descriptions are dependent on one another, we show how they emerge from random accumulations of beliefs. We categorize the space of social norms into several natural classes and study the evolutionary competition between these classes of norms. We apply our model to the Game of Chicken and the Nash Bargaining Game. Furthermore, we show how the space of norms and evolutionary stability are dependent on the correlation structure of the environment and under which such correlation structures social dilemmas can be ameliorated or exacerbated.
Behavior-incidence models have been used to model phenomena such as free-riding vaccinating behavior, where nonvaccinators free ride on herd immunity generated by vaccinators. Here, we develop and analyze a simulation model of voluntary ring vaccination on an evolving social contact network. Individuals make vaccination decisions by examining their expected payoffs, which are influenced by the infection status of their neighbors. We find that stochasticity can make outcomes extremely variable (near critical thresholds) and thus unpredictable: some stochastic realizations result in rapid control through ring vaccination while others result in widespread transmission. We also explore the phenomenon of outcome inelasticity, wherein behavioral responses result in certain outcome measures remaining relatively unchanged. Finally, we explore examples where ineffective or risky vaccines are more widely adopted than safe, effective vaccines. This occurs when such a vaccine is unattractive to a sufficient number of contacts of an index case to cause failure of ring vaccination. As a result, the infection percolates through the entire network, causing the final epidemic size and vaccine coverage to be higher than would otherwise occur. Effects such as extreme outcome variability and outcome inelasticity have implications for vaccination policies that depend on individual choice for their success and predictability.
Humans are a hyper social species, which greatly impacts the spread of infectious diseases. How do social dynamics impact epidemiology? How does public health policy best take into account these impacts? Here we develop a model of disease transmission that incorporates human behaviour and social dynamics. We use a "tipping-point" dynamic, previously used in the sociological literature, where individuals adopt a behaviour given a sufficient frequency of the behaviour in the population. The thresholds at which individuals adopt behaviours is modulated by the perceived risks of infection, i.e.\ the disease prevalence and transmission rate, and the behaviour of others. Social conformity creates a type of "stickiness" whereby individuals are resistant to changing their behaviour due to the population's inertia. In this model, the epidemic attack rate is sensitive to the timing of the behavioural response. Near the optimal response, small errors can result in large increases in the total number infected during the epidemic. And, more surprisingly, we observe a non-monotinicity in the attack rate as a function of various biological and social parameters such as the transmission rate, efficacy of social distancing, the costs to social distancing, the weight of social consequences of shirking the norm, and the degree of heterogeneity in the population.
Life-history strategies are a crucial aspect of life, which are complicated in group-living species, where pay-offs additionally depend on others’ behaviours. Previous theoretical models of public goods games have generally focused on the amounts individuals contribute to the public good. Yet a much less-studied strategic aspect of public goods games, the timing of contributions, can also have dramatic consequences for individual and collective performance. Here, we develop two stage game theoretical models to explore how the timing of contributions evolves. In the first stage, individuals contribute to a threshold public good based on a performance schedule. The second stage begins once the threshold is met, and the individuals then compete as a function of their performance. We show how contributing rapidly is not necessarily optimal, because delayers can act as ‘cheats,’ avoiding contributing while reaping the benefits of the public good. However, delaying too long can put the delayers at a disadvantage as they may be ill-equipped to compete. These effects lead to bistability in a single group, and spatial diversity among multiple interacting groups.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.