Modern evolutionary biology is founded on the Mendelian-genetic model of inheritance, but it is now clear that this model is incomplete. Empirical evidence shows that environment (encompassing all external influences on the genome) can impose transgenerational effects and generate heritable variation for a broad array of traits in animals, plants, and other organisms. Such effects can be mediated by the transmission of epigenetic, cytoplasmic, somatic, nutritional, environmental, and behavioral variation. Building on the work of many authors, we outline a general framework for conceptualizing nongenetic inheritance and its evolutionary implications. This framework shows that, by decoupling phenotypic change from the genotype, nongenetic inheritance can circumvent the limitations of genetic inheritance and thereby influence population dynamics and alter the fitness landscape. The weight of theory and empirical evidence indicates that nongenetic inheritance is a potent factor in evolution that can engender outcomes unanticipated under the Mendelian-genetic model.
Many populations are composed of a mixture of individuals that reproduce at different times, and these times are often heritable. Under these conditions, gene flow should be limited between early and late reproducers, even within populations having a unimodal temporal distribution of reproductive activity. This temporal restriction on gene flow might be called 'isolation by time' (IBT) to acknowledge its analogy with isolation by distance (IBD). IBD and IBT are not exactly equivalent, however, owing to differences between dispersal in space and dispersal in time. We review empirical studies of natural populations that provide evidence for IBT based on heritabilities of reproductive time and on molecular genetic differences associated with reproductive time. When IBT is present, variation in selection through the reproductive season may lead to adaptive temporal variation in phenotypic traits [adaptation by time (ABT)]. We introduce a novel theoretical model that shows how ABT increases as (i) selection on the trait increases; (ii) environmental influences on reproductive time decrease; (iii) the heritability of reproductive time increases; and (iv) the temporal distribution of reproductive activity becomes increasingly uniform. We then review empirical studies of natural populations that provide evidence for ABT by documenting adaptive temporal clines in phenotypic traits. The best evidence for IBT and ABT currently comes from salmonid fishes and flowering plants, but we expect that future work will show these processes are more widespread.
SUMMARYWhy is it that some parasites cause high levels of host damage (i.e. virulence) whereas others are relatively benign? There are now numerous reviews of virulence evolution in the literature but it is nevertheless still difficult to find a comprehensive treatment of the theory and data on the subject that is easily accessible to non-specialists. Here we attempt to do so by distilling the vast theoretical literature on the topic into a set of relatively few robust predictions. We then provide a comprehensive assessment of the available empirical literature that tests these predictions. Our results show that there have been some notable successes in integrating theory and data but also that theory and empiricism in this field do not ‘speak’ to each other very well. We offer a few suggestions for how the connection between the two might be improved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.