Mate choice by males has been recognized at least since Darwin's time, but its phylogenetic distribution and effect on the evolution of female phenotypes remain poorly known. Moreover, the relative importance of factors thought to underlie the evolution of male mate choice (especially parental investment and mate quality variance) is still unresolved. Here I synthesize the empirical evidence and theory pertaining to the evolution of male mate choice and sex role reversal in insects, and examine the potential for male mating preferences to generate sexual selection on female phenotypes. Although male mate choice has received relatively little empirical study, the available evidence suggests that it is widespread among insects (and other animals). In addition to ' precopulatory ' male mate choice, some insects exhibit ' cryptic ' male mate choice, varying the amount of resources allocated to mating on the basis of female mate quality. As predicted by theory, the most commonly observed male mating preferences are those that tend to maximize a male's expected fertilization success from each mating. Such preferences tend to favour female phenotypes associated with high fecundity or reduced sperm competition intensity. Among insect species there is wide variation in mechanisms used by males to assess female mate quality, some of which (e.g. probing, antennating or repeatedly mounting the female) may be difficult to distinguish from copulatory courtship. According to theory, selection for male choosiness is an increasing function of mate quality variance and those reproductive costs that reduce, with each mating, the number of subsequent matings that a male can perform (' mating investment '). Conversely, choosiness is constrained by the costs of mate search and assessment, in combination with the accuracy of assessment of potential mates and of the distribution of mate qualities. Stronger selection for male choosiness may also be expected in systems where female fitness increases with each copulation than in systems where female fitness peaks at a small number of matings. This theoretical framework is consistent with most of the empirical evidence. Furthermore, a variety of observed male mating preferences have the potential to exert sexual selection on female phenotypes. However, because male insects typically choose females based on phenotypic indicators of fecundity such as body size, and these are usually amenable to direct visual or tactile assessment, male mate choice often tends to reinforce stronger vectors of fecundity or viability selection, and seldom results in the evolution of female display traits. Research on orthopterans has shown that complete sex role reversal (i.e. males choosy, females competitive) can occur when male parental investment limits female fecundity and reduces the potential rate of reproduction of males sufficiently to produce a female-biased operational sex ratio. By contrast, many systems exhibiting partial sex role reversal (i.e. males choosy and competitive) are not associa...
Diet affects both lifespan and reproduction [1-9], leading to the prediction that the contrasting reproductive strategies of the sexes should result in sex-specific effects of nutrition on fitness and longevity [6, 10] and favor different patterns of nutrient intake in males and females. However, males and females share most of their genome and intralocus sexual conflict may prevent sex-specific diet optimization. We show that both male and female longevity were maximized on a high-carbohydrate low-protein diet in field crickets Teleogryllus commodus, but male and female lifetime reproductive performances were maximized in markedly different parts of the nutrient intake landscape. Given a choice, crickets exhibited sex-specific dietary preference in the direction that increases reproductive performance, but this sexual dimorphism in preference was incomplete, with both sexes displaced from the optimum diet for lifetime reproduction. Sexes are, therefore, constrained in their ability to reach their sex-specific dietary optima by the shared biology of diet choice. Our data suggest that sex-specific selection has thus far failed fully to resolve intralocus sexual conflict over diet optimization. Such conflict may be an important factor linking nutrition and reproduction to lifespan and aging.
Summary 1.Classic evolutionary models interpret ageing as a cost of reproduction, but evolutionary research has thus far largely neglected the conceptual links between the evolution of ageing and a key mode of selection on male and female reproductive strategies -sexual selection and sexual conflict. 2. We synthesize ideas and evidence linking sex and ageing, and make the case that a focus on this fascinating problem will ultimately lead to a more complete understanding of both the evolution of ageing and the evolution of sexual strategies. 3. The primary and secondary differentiation of male and female reproductive strategies is expected to produce sex-specific optima for traits that affect longevity and ageing rate, often favouring a 'live fast, die young' strategy in males, relative to females, although numerous exceptions to this pattern are observed and sex-differences in ageing rate, in particular, remain poorly understood. 4. Conversely, environmental factors that influence life expectancy or ageing rate can thereby determine the magnitude or even sign of sexual selection. 5. Sexual conflict is expected to displace the sexes from their sex-specific life-history optima through sexually antagonistic interactions, as well as sex-specific selection on loci expressed in both sexes. 6. Despite the availability of interesting and testable hypotheses linking sexual selection and ageing, relevant empirical studies are remarkably sparse, and the complex relation between sex, mortality rate and ageing remains poorly understood.
Modern evolutionary biology is founded on the Mendelian-genetic model of inheritance, but it is now clear that this model is incomplete. Empirical evidence shows that environment (encompassing all external influences on the genome) can impose transgenerational effects and generate heritable variation for a broad array of traits in animals, plants, and other organisms. Such effects can be mediated by the transmission of epigenetic, cytoplasmic, somatic, nutritional, environmental, and behavioral variation. Building on the work of many authors, we outline a general framework for conceptualizing nongenetic inheritance and its evolutionary implications. This framework shows that, by decoupling phenotypic change from the genotype, nongenetic inheritance can circumvent the limitations of genetic inheritance and thereby influence population dynamics and alter the fitness landscape. The weight of theory and empirical evidence indicates that nongenetic inheritance is a potent factor in evolution that can engender outcomes unanticipated under the Mendelian-genetic model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.