a b s t r a c tAn analytical/numerical methodology is presented to calculate the radiated noise due to internal combustion engine piston impacts on the cylinder liner through a film of lubricant. Both quasi-static and transient dynamic analyses coupled with impact elastohydrodynamics are reported. The local impact impedance is calculated, as well as the transferred energy onto the cylinder liner. The simulations are verified against experimental results for different engine operating conditions and for noise levels calculated in the vicinity of the engine block. Continuous wavelet signal processing is performed to identify the occurrence of piston slap noise events and their spectral content, showing good conformance between the predictions and experimentally acquired signals.
Advanced piston technology for motorsport applications is driven through development of lightweight pistons with preferentially compliant short partial skirts. The preferential compliance is achieved through structural stiffening, such that a greater entrainment wedge is achieved at the skirt's bottom edge through thermo-elastic deformation, whilst better conforming contact geometry at the top of the skirt. In practice, the combination of some of these conditions is intended to improve the load-carrying capacity and reduce friction. The approach is fundamental to the underlying ethos of race and high-performance engine technology. Contact loads of the order of 5 kN and contact kinematics in the range 0-35 m/s result in harsh transient tribological conditions. Therefore, piston design requires detailed transient analysis, which integrates piston dynamics, thermo-elastic distortion and transient elastohydrodynamics. The paper provides such a detailed analysis as well as verification of the same using noninvasive ultrasonic-assisted lubricant film thickness measurement from a fired engine under normal operating conditions, an approach not hitherto reported in literature. Good agreement is noted between measured film thickness and predictions.
The piston-cylinder conjunction accounts for nearly 50% of all the parasitic frictional losses in an IC engine of which the piston skirt accounts for nearly half of these losses. Consequently, part-circumferential short skirted compliant pistons have become a development trend, particularly for high-performance engines. Another trend has been the use of light weight moving parts to reduce inertial imbalance. This has led to the use of shorter lighter pistons constructed from lower density materials, such as aluminium. These higher power density pistons typically operate at elevated temperatures and undergo significant mechanical and thermal distortions due to the relatively high thermal expansion coefficients. As a result thermo-mechanical distortion of the skirt plays an important role in controlling the clearance gap between the skirt and the liner and makes the analysis, particularly skirt deformation, a computationally intensive procedure. This paper presents a semi-automatic methodology for the prediction of piston skirt thermo-mechanical deflection, which incorporates skirt deformation as well as piston crown compliant contribution to the skirt-liner clearance. This procedure is based on the creation of a compliance matrix and its intricate manipulation, significantly reducing the simulation run times. Integration of this approach with the numerical solution of Reynolds equation leads to an accurate prediction of film thickness. In addition, an array of ultrasonic sensors is used to directly measure the conjunctional lubricant film thickness in a non-invasive manner. The predictions and measurements show good conformance, an approach not hitherto reported in literature.
The in situ profiles of the piston skirt and cylinder bore surface are subject to thermo-elastic global deformation due to differential operating temperatures and forces. In operation, a lubricant film is entrained into and pressurized within the gap between these profiles. This film not only supports the prevailing contact load, but also inhibits direct interaction of surfaces, thus reducing friction and thereby improving fuel efficiency. The reduction of reciprocating mass in motorsport applications has been achieved through the use of partial circumferential skirts for a number of years now. The response of the shape to both mechanical and structural loadings differs from the classic full circumferential skirt studies. This paper provides a ‘snapshot’ into how the inherent piston side load is supported by the piston skirt. It highlights the importance of the operational temperature on the skirt profile, conjunctional gap and the lubricant film. Additionally, it shows how a given piston skirt shape and its structural stiffness perform in operation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.