Background Invasive alien species (IAS) cause significant economic losses in all parts of the world. Although IAS are widespread in Africa and cause serious negative impacts on livelihoods as a result of yield losses and increased labour costs associated with IAS management, few data on the impacts are available in the literature and the magnitude and extent of the costs are largely unknown. We estimated the cost of IAS to agriculture, the most important economic sector in Africa. Methods Data on the monetary costs of IAS to mainland Africa as well as information about the presence and abundance of the most important IAS were collected through literature review and an online survey among a wide variety of stakeholders. Using this and additional data from publicly available sources we estimated yield losses and management costs due to IAS in agriculture for individual countries and the entire continent. Where the data allowed, the costs for selected IAS or crops were estimated separately. The estimates were extrapolated using production and distribution data and/or matching of agro-ecological zones. Results The total estimated annual cost of IAS to agriculture in Africa is USD 3.66 Tn. Yield losses, reductions in livestock derived income and IAS management costs, mainly labour costs, constitute the majority of the estimated cost (ca. 1, < 1 and 99 percent, respectively). The IAS causing the highest yield losses were Phthorimaea absoluta (USD 11.4 Bn) and Spodoptera frugiperda (USD 9.4 Bn). Conclusions This study reveals the extent and scale of the economic impacts of IAS in the agricultural sector in one of the least studied continents. Although the cost estimate presented here is significant, IAS also cause major costs to other sectors which could not be assessed due to data deficit. The results highlight the need for pre-emptive management options, such as prevention and early detection and rapid response to reduce huge potential future costs, as well as measures that contribute to large-scale control of widely established IAS at little cost to farmers and other affected land users, to reduce losses and improve livelihoods.
Field surveys were conducted monthly between December 2008 and July 2009 in Kerala, south-west India to compare the population dynamics of the red palm mite Raoiella indica (RPM) on two host plants Areca catechu and Cocos nucifera during one non-monsoon season when, in general, RPM populations increase. The aim was to examine the effects of host plant, host plant locality and the impact of climatic factors on RPM and related phytoseiid predators. There were significantly higher RPM densities on areca in peak season (May/June) compared to coconut; although significantly more coconut sites were infested with RPM than areca. Although no one climatic factor was significantly related to RPM numbers, interactions were found between temperature, humidity and rainfall and the partitioning of host plant locality showed that where conditions were warmer and drier, RPM densities were significantly higher. Specifically on coconut, there was a significant relation between RPM densities and the combined interaction between site temperature, site humidity and phytoseiid densities. There was a marked difference in the density of phytoseiids collected between areca and coconut palms, with significantly more on the latter, in several months. Amblyseius largoensis was the most commonly collected phytoseiid in association with RPM, although Amblyseius tamatavensis species group and Amblyseius largoensis species group were collected in association with RPM also. There was also evidence of a weak numerical response of the combined phytoseiid complex in relation to RPM density the previous month on coconut but this was not observed on areca.
SU MMARYTrials at Tulloch, Aberdeen (sandy loam soil, 820 mm rainfall) and Woodside, Elgin (light sandy loam, 730 mm) compared organically managed crop rotations containing different proportions of spring oats, swedes, potatoes and grass/clover leys (0 . 50 and 0 . 67 of the rotation at Tulloch ; 0 . 38 and 0 . 50 at Woodside). The trials simulated farm conditions through the use of grazing animals and the recycling of farmyard manure. The rotations at each site gave similar financial outputs. Yields of oats were higher where these were grown after the main ley phase of the rotation than where they were grown later in the rotation (more ears/m 2 and grains/ear), but were not significantly higher after a 4-year ley than after a 3-year ley at Tulloch. It was concluded that all of the rotations were agronomically and financially sustainable. Cereal yields showed large year-to-year variations but little indication of a progressive decline. There were only small changes in soil organic matter, soil P and soil K. Increased early summer weed cover in the arable crops was not matched by increases in weed invasion in the grass/clover leys and did not appear to be affecting yields.
Sustainable intensification is a process by which agricultural productivity is enhanced whilst also creating environmental and social benefits. We aimed to identify practices likely to deliver sustainable intensification, currently available for UK farms but not yet widely adopted. We compiled a list of 18 farm management practices with the greatest potential to deliver sustainable intensification in the UK, following a well‐developed stepwise methodology for identifying priority solutions, using a group decision‐making technique with key agricultural experts. The list of priority management practices can provide the focal point of efforts to achieve sustainable intensification of agriculture, as the UK develops post‐Brexit agricultural policy, and pursues the second Sustainable Development Goal, which aims to end hunger and promote sustainable agriculture. The practices largely reflect a technological, production‐focused view of sustainable intensification, including for example, precision farming and animal health diagnostics, with less emphasis on the social and environmental aspects of sustainability. However, they do reflect an integrated approach to farming, covering many different aspects, from business organization and planning, to soil and crop management, to landscape and nature conservation. For a subset of 10 of the priority practices, we gathered data on the level of existing uptake in English and Welsh farms through a stratified survey in seven focal regions. We find substantial existing uptake of most of the priority practices, indicating that UK farming is an innovative sector. The data identify two specific practices for which uptake is relatively low, but which some UK farmers find appealing and would consider adopting. These practices are: prediction of pest and disease outbreaks, especially for livestock farms; staff training on environmental issues, especially on arable farms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.