In this paper, we present a challenging task of 3D segmentation of individual plant leaves from occlusions in the complicated natural scene. Depth data of plant leaves is introduced to improve the robustness of plant leaf segmentation. The low cost RGB-D camera is utilized to capture depth and color image in fields. Mean shift clustering is applied to segment plant leaves in depth image. Plant leaves are extracted from the natural background by examining vegetation of the candidate segments produced by mean shift. Subsequently, individual leaves are segmented from occlusions by active contour models. Automatic initialization of the active contour models is implemented by calculating the center of divergence from the gradient vector field of depth image. The proposed segmentation scheme is tested through experiments under greenhouse conditions. The overall segmentation rate is 87.97% while segmentation rates for single and occluded leaves are 92.10% and 86.67%, respectively. Approximately half of the experimental results show segmentation rates of individual leaves higher than 90%. Nevertheless, the proposed method is able to segment individual leaves from heavy occlusions.
We propose an in situ detection method of multiple leaves with overlapping and occlusion in greenhouse conditions. Initially a multilayer perceptron (MLP) is used to classify partial boundary images of pepper leaves. After the partial leaf boundary detection, active shape models (ASMs) are subsequently built to employ the images of entire leaves based on a priori knowledge using landmark. Two deformable models were developed with pepper leaves:Boundary-ASM and MLP-ASM. Matching processes are carried out by deforming the trained leaf models to fit real leaf images collected in the greenhouse. MLP-ASM detected 76.7 and 87.8% of overlapping and occluded pepper leaves respectively, while Boundary-ASM showed detection rates of 63.4 and 76.7%. The detection rates by the conventional ASM were 23.3 and 29.3%. The leaf models trained with pepper leaves were further tested with leaves of paprika, in the same family but with more complex shapes (e.g., holes and rolling). Although the overall detection rates were somewhat lower than those for pepper, the rates for the occluded and overlapping leaves of paprika were still higher with MLP-ASM (ranging from 60.4 to 76.7%) and Boundary-ASM (ranging from 50.5 to 63.3%) than using the conventional active shape model (from 21.6 to 30.0%). The modified active shape models with the boundary classifier could be an efficient means for detecting multiple leaves in field conditions. ª 2013 IAgrE. Published by Elsevier Ltd. All rights reserved.
IntroductionIn conventional farming, agricultural cultivation and pest management are conducted manually by farmers, causing human health problems and productivity loss. Recently, precision agriculture has been proposed to reduce the chemical stress to humans and agricultural products, relying on new technologies (Zhang, Wang, & Wang, 2002), such as computer vision and robotics. Proper judgement of leaf status is essential for effective management of crops including cultivation and crop protection. Automatic detection of individual leaves is a fundamental * Corresponding author. Tel.: þ82 51 5102261; fax: þ82 51 5812962.E-mail address: tschon@pusan.ac.kr (T.-S. Chon).Available online at www.sciencedirect.com journal homepa ge: www .e lsev ie r.com/locate/issn/153 75110 b i o s y s t e m s e n g i n e e r i n g 1 1 6 ( 2 0 1 3 ) 2 3 e3 5
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.