In semi-classical systems, the exponential growth of the out-of-time-order correlator (OTOC) is believed to be the hallmark of quantum chaos. However, on several occasions, it has been argued that, even in integrable systems, OTOC can grow exponentially due to the presence of unstable saddle points in the phase space. In this work, we probe such an integrable system exhibiting saddle-dominated scrambling through Krylov complexity and the associated Lanczos coefficients. In the realm of the universal operator growth hypothesis, we demonstrate that the Lanczos coefficients follow the linear growth, which ensures the exponential behavior of Krylov complexity at early times. The linear growth arises entirely due to the saddle, which dominates other phase-space points even away from itself. Our results reveal that the exponential growth of Krylov complexity can be observed in integrable systems with saddle-dominated scrambling and thus need not be associated with the presence of chaos.
We present a version of holographic correspondence where bulk solutions with sources localized on the holographic screen are the key objects of interest, and not bulk solutions defined by their boundary values on the screen. We can use this to calculate semi-classical holographic correlators in fairly general spacetime regions, including flat space with timelike boundaries. In AdS, the distinction between our approach and the standard Dirichlet-like approach is superficial. But in more general settings, the analytic continuation of the Dirichlet Green function does not lead to a Feynman propagator in the bulk. Our prescription avoids this problem. Furthermore, in Lorentzian signature we find an additional homogeneous mode. This is a natural proxy for the AdS normalizable mode and allows us to do bulk reconstruction. Perturbatively adding bulk interactions to these discussions is straightforward. We conclude by elevating some of these ideas into a general philosophy about mechanics and field theory. We argue that localizing sources on suitable submanifolds can be an instructive alternative formalism to treating these submanifolds as boundaries.
We study the operator growth in open quantum systems with dephasing dissipation terms, extending the Krylov complexity formalism of [1]. Our results are based on the study of the dissipative q-body Sachdev-Ye-Kitaev (SYKq) model, governed by the Markovian dynamics. We introduce a notion of “operator size concentration” which allows a diagrammatic and combinatorial proof of the asymptotic linear behavior of the two sets of Lanczos coefficients (an and bn) in the large q limit. Our results corroborate with the semi-analytics in finite q in the large N limit, and the numerical Arnoldi iteration in finite q and finite N limit. As a result, Krylov complexity exhibits exponential growth following a saturation at a time that grows logarithmically with the inverse dissipation strength. The growth of complexity is suppressed compared to the closed system results, yet it upper bounds the growth of the normalized out-of-time-ordered correlator (OTOC). We provide a plausible explanation of the results from the dual gravitational side.
Scar states are special many-body eigenstates that weakly violate the eigenstate thermalization hypothesis (ETH). Using the explicit formalism of the Lanczos algorithm, usually known as the forward scattering approximation in this context, we compute the Krylov state (spread) complexity of typical states generated by the time evolution of the PXP Hamiltonian, hosting such states. We show that the complexity for the Néel state revives in an approximate sense, while complexity for the generic ETH-obeying state always increases. This can be attributed to the approximate SU(2) structure of the corresponding generators of the Hamiltonian. We quantify such "closeness" by the q-deformed SU(2) algebra and provide an analytic expression of Lanczos coefficients for the Néel state within the approximate Krylov subspace. We intuitively explain the results in terms of a tight-binding model. We further consider a deformation of the PXP Hamiltonian and compute the corresponding Lanczos coefficients and the complexity. We find that complexity for the Néel state shows nearly perfect revival while the same does not hold for a generic ETH-obeying state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.