The noncontact measurement of vital sign signals is useful for medical care, rescuing disaster survivors from ruins and public safety. In this paper, a novel vital sign signal extraction method based on permutation entropy (PE) and ensemble empirical mode decomposition (EEMD) algorithm is proposed. The proposed algorithm analyzes the permutation entropy of radar-received pulses; the range between a human target and ultra-wideband (UWB) radar can be obtained by permutation entropy. Permutation entropy represents the complexity of signals, so we can use PE to select and recombine human life signals that are distributed in the adjacent distance gate. Moreover, EEMD algorithm is adopted to decompose the combined signal into intrinsic mode functions (IMF), and both the respiration and the heartbeat signals are reconstructed by IMF via reaching the energy threshold in the time domain. Experiments are carried out using UWB radar. Compared with traditional algorithms, the proposed algorithm can be used to extract the range and frequency information of human targets efficiently and accurately.
INDEX TERMSVital sign signal, ultra-wideband (UWB) radar, ensemble empirical mode decomposition (EEMD), permutation entropy (PE).
Obtaining information (e.g., position, respiration, and heartbeat rates) on humans located behind opaque and non-metallic obstacles (e.g., walls and wood) has prompted the development of non-invasive remote sensing technologies. Due to its excellent features like high penetration ability, short blind area, fine-range resolution, high environment adoption capabilities, low cost and power consumption, and simple hardware design, impulse radio ultra-wideband (IR-UWB) through-wall radar has become the mainstream primary application radar used for the non-invasive remote sensing. IR-UWB through-wall radar has been developed for nearly 40 years, and various hardware compositions, deployment methods, and signal processing algorithms have been introduced by many scholars. The purpose of these proposed approaches is to obtain human information more accurately and quickly. In this paper, we focus on IR-UWB through-wall radar and introduce the key advances in system design and deployment, human detection theory, and signal processing algorithms, such as human vital sign signal measurement methods and moving human localization. Meanwhile, we discuss the engineering pre-processing methods of IR-UWB through-wall radar. The lasts research progress in the field is also presented. Based on this progress, the conclusions and the development directions of the IR-UWB through-wall radar in the future are also preliminarily forecasted.
Image fusion is the key step to improve the performance of object detection in polarization images. We propose an unsupervised deep network to address the polarization image fusion issue. The network learns end-to-end mapping for fused images from intensity and degree of linear polarization images, without the ground truth of fused images. Customized architecture and loss function are designed to boost performance. Experimental results show that our proposed network outperforms other state-of-the-art methods in terms of visual quality and quantitative measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.