The nonlinear trajectory and bistatic characteristics of general bistatic synthetic aperture radar (SAR) can cause severe two-dimensional space-variance in the echo signal, and therefore it is difficult to focus the echo signal directly using the traditional frequency-domain imaging algorithm based on the assumption of azimuth translational invariance. At present, the state-of-the-art nonlinear trajectory imaging algorithm is based on singular value decomposition (SVD), which has the problem that SVD may be not controlled, and thus may lead to a high imaging complexity or low imaging accuracy. Therefore, this article proposes a nonlinear trajectory SAR imaging algorithm based on controlled SVD (CSVD). Firstly, the chirp scaling algorithm (CSA) is used to correct the range sapce-variance, and then SVD is used to decompose the remaining azimuth space-variant phase, and the first two feature components after SVD are integrated to make them be represented by a new feature component. Finally, the new feature component is used for interpolation to correct the azimuth space-variance. The simulation results show that the proposed CSVD can further improve the image quality compared with SVD-Stolt.
The knowledge of heart and respiratory rates (HRs and RRs) is essential in assessing human body static. This has been associated with many applications, such as survivor rescue in ruins, lie detection, and human emotion detection. Thus, the vital signal extraction from radar echoes after pre-treatments, which have been applied using various methods by many researchers, has exceedingly become a necessary part of its further usage. In this review, we describe the variety of techniques used for vital signal extraction and verify their accuracy and efficiency. Emerging approaches such as wavelet analysis and mode decomposition offer great opportunities to measure vital signals. These developments would promote advancements in industries such as medical and social security by replacing the current electrocardiograms (ECGs), emotion detection for survivor status assessment, polygraphs, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.