Abstract. Two new species of Copris Geoffroy, 1762 are described and illustrated: Copris (subgenus incertae sedis) caobangensis sp. n. from Caobang Province (northern Vietnam) and Copris (Copris) sonensis sp. n. from Thanhhoa Province (central Vietnam). Copris (Copris) szechouanicus Balthasar, 1958 is recorded in Vietnam for the fi rst time and data on the morphology, distribution and ecology of this species are given. An updated species list and an identifi cation key for the Copris species so far known from Vietnam are presented along with detailed photographs of the poorly known species.
Dung beetles are widely used as bio-indicators of habitat changes because they respond quickly to changes in environmental conditions. Altitudinal variation in dung-beetle communities has been studied in various geographical areas. However, there is little known about dung-beetle shifting in tropical forests of Vietnam. This study investigates dung-beetle communities along an altitudinal gradient ranged from 400 to 800 m above sea level (a.s.l.). We collected dung beetles at three transects of three altitudinal classes (altitudinal class 1 = 400 m a.s.l., class 2 = 600 m a.s.l., and class 3 = 800 m a.s.l.) in primary forests of Pu Hoat Nature Reserve, using baited pitfall traps. In total, 28 dung-beetle species of 10 genera were recorded during the course of the study. Of the total recorded species, 25, 22 and 17 species were collected in the altitudinal class 1, class 2, and class 3, respectively. The ANOVA test and Tukey’s post-hoc test showed significant differences in species richness, Shannon diversity, and abundance of dung beetles across the altitudinal gradient. Altitudinal class 1 had the highest richness of dung beetles. However, the highest abundance was recorded in the altitudinal class 2. Several dung-beetle species, in response to global warming, have shifted their altitudinal range upward, leading to serious conservation problems such as extinctions of high-elevation species.
I examined variation in community structure, species richness, biomass and abundance of Coprini dung beetles from 45 trapping sites in meadows, 35-year-old secondary forests and primary forests in tropical, high-elevation karst ecosystems of Puluong Nature Reserve, Thanh Hoa Province. My main aim was to explore community response to the influence of land use change. By comparing the structure and community attributes of the beetles between 35-year-old secondary forests and primary forests, I expected to give indications on the conservation value of the old secondary forests for beetle conservation. Community structure significantly differed among land-use types. Species richness, abundance and biomass were significantly higher in forest habitats than in meadows. The cover of ground vegetation, soil clay content and tree diameter are important factors structuring Coprini communities in karst ecosystems of Pu Luong. The secondary forests, after 35 years of regrowth showed similarities in species richness, abundance and biomass to primary forests. This gives hope for the recovery of Coprini communities during forest succession. Keywords: Coprini, dung beetles, karst ecosystems, land use change, Pu Luong. References: [1] I. Hanski, Y. Cambefort, Dung beetle ecology, Princeton University Press, Princeton, 1991.[2] C.H. Scholtz, A.L.V. Davis, U. Kryger, Evolutionary biology and conservation of dung beetles, Pensoft Publisher, Bulgaria, 2009.[3] E. Nichols, S. Spector, J. Louzada, T. Larsen, S. Amezquita, M.E. Favila et al., Ecological functions and ecosystem services provided by Scarabaeinae dung beetles, Biol. Conserv. 141 (2008) 1461-1474. https://doi.org/10.1016/j.biocon.2008.04.011.[4] H.K. Gibbsa, A.S. Rueschb, F. Achardc, M.K. Claytond, P. Holmgrene, N. Ramankuttyf, J.A. Foleyg, Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s, Proc Natl Acad Sci USA 107 (2010) 16732-16737. https://doi.org/10.1073/pnas.0910275107.[5] L.D. Audino, J. Louzada, L. Comita, Dung beetles as indicators of tropical forest restoration success: is it possible to recover species and functional diversity? Biol. Conserv. 169 (2014) 248-257. https://doi.org/10.1016/j.biocon.2013.11.023.[6] W. Beiroz, E.M. Slade, J. Barlow, J.M. Silveira, J. Louzada, E. Sayer, Dung beetle community dynamics in undisturbed tropical forests: implications for ecological evaluations of land-use change, Insect Conservation and Diversity 10 (2017) 94-106. https://doi.org/10.1111/icad.12206.[7] S. Boonrotpong, S. Sotthibandhu, C. Pholpunthin, Species composition of dung beetles in the primary and secondary forests at Ton Nga Chang Wildlife Sanctuary, ScienceAsia 30 (2004) 59-65. https: // doi.org/10.2306/scienceasia1513-1874.2004.30.059.[8] S. Boonrotpong, S. Sotthibandhu, C. Satasook, Species turnover and diel flight activity of species of dung beetles, Onthophagus, in the tropical lowland forest of peninsular Thailand, Journal of Insect Science 12 (77) (2012). https://doi.org/10. 1673/031.012.7701.[9] A.J. Davis, J.D. Holloway, H. Huijbregts, J. Krikken, A.H. Kirk-Spriggs, S.L. Sutton, Dung beetles as indicators of change in the forests of northern Borneo, Journal of Applied Ecology 38 (2001) 593-616. https://doi.org/10.1046/j.1365-2664.2001.00619.x.[10] K. Frank, M. Hülsmann, T. Assmann, T. Schmitt, N. Blüthgen, Land use affects dung beetle communities and their ecosystem service in forests and grasslands, Agriculture, Ecosystems & Environment 243 (2017) 114-122.[11] T.A. Gardner, M.I.M. Hernández, J. Barlow, C.A. Peres, Understanding the biodiversity consequences of habitat change: the value of secondary and plantation forests for neotropical dung beetles, Journal of Applied Ecology 45 (2008) 883-893. https://doi.org/10.1111/j.1365-2664. 2008.01454.x.[12] L. Hayes, D.J. Mann, A.L. Monastyrskii, O.T. Lewis, Rapid assessments of tropical dung beetle and butterfly assemblages: contrasting trends along a forest disturbance gradient, Insect Conservation and Diversity 2 (2009) 194-203. https://doi.org/ 10.1111/j.1752-4598.2009.00058.x.[13] I. Quintero, T. Roslin, Rapid recovery of dung beetle communities following habitat fragmentation in central Amazonia, Ecology 12 (2005) 3303-3311. https://doi.org/10.1890/04-1960.[14] Shahabuddin, C.H. Schulze, T. Tscharntke, Changes of dung beetle communities from rainforests towards agroforestry systems and annual cultures in Sulawesi (Indonesia), Biodiversity and Conservation 14 (2005) 863-877. https://doi.org/10.1007/s10531-004-0654-7.[15] K. Vulinec, Dung beetle communities and seed dispersal in primary forest and disturbed land in Amazonia, Biotropica 34 (2002) 297-309. https:// doi.org/10.1111/j.1744-7429.2002.tb00541.x.[16] K. Vulinec, J.E. Lambert, D.J. Mellow, Primate and dung beetle communities in secondary growth rain forests: implications for conservation of seed dispersal systems, International Journal of Primatology 27 (2006) 855-879. https://doi.org/10. 1007/s10764-006-9027-2.[17] E. Nichols, T. Larsen, S. Spector, A.L. Davis, F. Escobar, M. Favila, K. Vulinec, Global dung beetle response to tropical forest modification and fragmentation: a quantitative literature review and meta-analysis, Biological Conservation 137 (2007) 1-19. https://doi.org/10.1016/j.biocon.2007.01.023.[18] R. Clements, N.S. Sodhi, M. Schilthuizen, K.L.Ng. Peter, Limestone karsts of Southeast Asia: imperiled arks of biodiversity, BioScience 56 (2006) 733-742. https://doi.org/10.1641/0006-3568(2006)56[733:LKOSAI]2.0.CO;2.[19] M. Schilthuizen, T.S. Liew, B.B. Elahan, I. Lackman-Ancrenaz, Effects of karst forest degradation on pulmonate and prosobranch land snail communities in Sabah, Malaysian Borneo, Conservation Biology 19 (2005) 949-954. https://doi.org/10.1111/j.1523-1739.2005.00209.x.[20] C. Costa, V.H.F. Oliveira, R. Maciel, W. Beiroz, V. Korasaki, J. Louzada, Variegated tropical landscapes conserve diverse dung beetle communities, PeerJ 5 (2017). https://doi.org/10. 7717/peerj.3125.[21] R.P. Salomão, D. González-Tokmana, W. Dáttilo, J.C. López-Acosta, M.E. Favila, Landscape structure and composition define the body condition of dung beetles (Coleoptera: Scarabaeinae) in a fragmented tropical rainforest, Ecol. Indic. 88 (2018) 144-151. https://doi.org/ 10.1016/j.ecolind.2018.01.033.[22] R.C. Campos, M.I.M. Hernández, Dung beetle assemblages (Coleoptera, Scarabaeinae) in Atlantic forest fragments in southern Brazil, Revista Brasileira de Entomologia 57 (2013) 47-54.[23] E. Nichols, Fear begets function in the ‘brown’ world of detrital food webs, Journal of Animal Ecology 82(4) (2013) 717-720. https://doi.org/ 10.1111/1365-2656.12099.[24] Tixier, J.M.G. Bloor, J.-P. Lumaret, Species-specific effects of dung beetle abundance on dung removal and leaf litter decomposition, Acta Oecologica 69 (2015) 31-34. https://doi.org/10. 1016/j.actao.2015.08.003.[25] P.M. Farias, L. Arellano, M.I.M. Hernández, S.L. Ortiz, Response of the copro- necrophagous beetle (Coleoptera: Scarabaeinae) assemblage to a range of soil characteristics and livestock management in a tropical landscape, Journal of Insect Conservation 19 (2015) 947-960. https://doi.org/10.1007/s 108 41-015-9812-3.[26] D.C. Osberg, B.M. Doube, S.A. Hanrahan, Habitat specificity in African dung beetles: the effect of soil type on the survival ofdung beetle immatures (Coleoptera: Scarabaeidae), Tropical Zoology 7 (1994) 1-10. https://doi.org/10.1080/03946975. 1994.10539236.[27] E. Andresen, S. Laurance, Possible indirect effects of mammal hunting on dung beetle assemblages in Panama, Biotropica 39 (2006) 141-146. https://doi.org/10.1111/j.1744-7429.2006.00239.x.[28] H. Enari, S. Koike, H. Sakamaki, Influences of different large mammalian fauna on dung beetle diversity in beech forests, Journal of Insect Science 13(54)(2013).https://doi.org/10.1673/031.013. 5401.[29] A. Estrada, D.A. Anzuras, R. Coastes-Estrada, Tropical forest fragmentation, howler monkeys (Alouatta palliata) and dung beetles at Los Tuxtlas, Mexico, American Journal of Primatology 48 (1999) 353-362.[30] C.A. Harvey, J. Gonzalez, E. Somarriba, Dung beetle and terrestrial mammal diversity in forests, indigenous agroforestry systems and plantain monocultures in Talamanca, Costa Rica, Biodiversity and Conservation 15 (2006) 555-585. https://doi.org/10.1007/s10531-005-2088-2.[31] K.V. Nguyễn, T.H. Nguyễn, K.L. Phan, T.H. Nguyễn, Bản đồ sinh khí hậu Việt Nam, Nhà xuất bản Đại học Quốc gia, Hà Nội, 2000.[32] E.J. Sterling, M.M. Hurley, M.D. Le, Vietnam–a natural history, Yale University Press, New Haven, CT, 2006.[33] T. Do, Characteristics of karst ecosystems of Vietnam and their vulnerability to human impact, Acta Geologica Sinica 75 (2001) 325-329.[34] V.T. Thái, Thảm thực vật rừng Việt Nam, Nhà xuất bản Khoa học và kỹ thuật, Hà Nội, 1978. [35] P.G.d. Silva, M.I.M. Hernández, Spatial patterns of movement of dung beetle species in a tropical forest suggest a new trap spacing for dung beetle biodiversity studies. PloS ONE 10 (5) (e0126112) (2015). https://doi.org/10.1371/journal.pone.0126112.[36] V.B. Bui, K. Dumack, M. Bonkowski, Two new species and one new record for the genus Copris (Coleoptera: Scarabaeidae: Scarabaeinae) from Vietnam with a key to Vietnamese species, European Journal of Entomology 115 (2018) 167-191. https://doi.org/10.14411/eje.2018.016.[37] V.B. Bui, M. Bonkowski, Synapsis puluongensis sp. nov. and new data on the poorly known species Synapsis horaki (Coleoptera: Scarabaeidae) from Vietnam with a key to Vietnamese species. Acta Entomologica Musei Nationalis Pragae 58 (2018) 407-418. https://doi.org/10.2478/aemnp-2018-0032.[38] O.N. Kabakov, A. Napolov, Fauna and ecology of Lamellicornia of subfamily Scarabaeinae of Vietnam and some parts of adjacent countries: South China, Laos, and Thailand, Latvijas Entomologs 37 (1999) 58-96.[39] J.E. Brower, J.H. Zar, C.N. Von-Ende, Field and laboratory methods for general ecology, 4th ed. Boston, WCB. McGraw-Hill, 1998.[40] R Core Team, R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (accessed 15 May 2017).[41] J. Oksanen, F.G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn et al., Vegan: Community Ecology Package, R package version 2.4–5 (2017). https://cran.r-project.org/web/packages/vegan.[42] R. Clements, P.K.L. Nga, X.X. Lub, S. Ambu, M. Schilthuizen, C.J.A. Bradshaw, Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts, Biological Conservation 141 (2751e2764) (2008). https://doi.org/10.1016/j.biocon.2008.08.011.[43] P.K.L. Ng, D. Guinot, T.M. Iliffe, Revision of the anchialine varunine crabs of the genus Orcovita Ng & Tomascik, 1994 (Crustacea: Decapoda: Brachyura: Grapsidae), with descriptions of four new species, Raffles Bulletin of Zoology 44 (1996) 109-134.[44] P.K.L. Ng, Cancrocaeca xenomorpha, new genus and species, a blind troglobitic freshwater hymenosomatid (Crustacea: Decapoda: Brachyura) from Sulawesi, Indonesia, Raffles Bulletin of Zoology 39 (1991) 59-73.[45] V. Balthasar, Monographie der Scarabaeidae und Aphodiidae der Palaearktischen und Orientalischen Region. Coleoptera: Lamellicornia. Band 1. Allgemeiner Teil, Systematischer Teil: 1. Scarabaeinae, 2. Coprinae (Pinotini, Coprini). Verlag der Tschechoslowakischen Akademie der Wissenschaften, Prag, 1963.[46] Y. Hanboonsong, K. Masumoto, T. Ochi, Dung beetles (Coleoptera, Scarabaeidae) of Thailand. Part 5. Genera Copris and Microcopris (Coprini), Elytra 31 (2003) 103-124.[47] D. Král, J. Rejsek, Synapsis naxiorum sp. n. from Yunnan (Coleoptera: Scarabaeidae), Acta Societatis Zoologicae Bohemicae 64 (2000) 267-270.[48] D. Král, Distribution and taxonomy of some Synapsis species, with description of S. strnadi sp. n. from Vietnam (Coleoptera: Scarabaeidae), Acta Societatis Zoologicae Bohemicae 66 (2002) 279-289.[49] T. Ochi, M. Kon, Notes on the coprophagous scarab beetles (Coleoptera, Scarabaeidae) from Southeast Asia (IV). A new horned species of Microcopris from Vietnam and a new subspecies of Copris erratus from Peleng off Sulawesi, Kogane 5 (2004) 25-30.[50] T. Ochi, M. Kon, H.T. Pham, Five new taxa of Copris (Coleoptera: Scarabaeidae) from Vietnam and Laos, Giornale Italiano di Entomologia 15 (64) (2019) 435-446.[51] T. Ochi, M. Kon, H.T. Pham, Two new species of Copris (Copris) (Coleoptera: Scarabaeidae) and a new subspecies of Phelotrupes (Sinogeotrupes) strnadi Král, Malý & Schneider (Coleoptera: Geotrupidae) from Vietnam, Giornale Italiano di Entomologia 15 (63) (2018) 159-168.[52] J. Zídek, S. Pokorný, Review of Synapsis Bates (Scarabaeidae: Scarabaeinae: Coprini), with description of a new species, Insecta Mundi 142 (2010) 1-21.[53] H.F. Howden, V.G. Nealis, Observations on height of perching in some tropical dung beetles (Scarabaeidae), Biotropica 10 (1978) 43-46. https://doi.org/10.1111/j.1752-4598.2009.00058.x.[54] T.H. Larsen, A. Lopera, A. Forsyth, Understanding trait-dependent community disassembly: Dung beetles, density functions, and forest fragmentation, Conservation Biology 22 (2008) 1288-1298. https://doi.org/10.1111/j.1523-1739.2008.00969.x.[55] S.B. Peck, A. Forsyth, Composition, structure, and competitive behaviour in a guild of Ecuadorian rain forest dung beetles (Coleoptera; Scarabaeidae), Canadian Journal of Zoology 60(7) (1982) 1624-1634. https://doi.org/10.1139/z82-213.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.