Senescence and quiescence are frequently used as interchangeable terms in the literature unwittingly. Despite the fact that common molecules play role in decision of cell cycle arrest, senescent and quiescent cells have some distinctive phenotypes at both molecular and morphological levels. Thus, in this review we summarized the features of senescence and quiescence with respect to visual characteristics and prominent key molecules. A PubMed research was conducted for the key words; "senescence", "quiescence" and "cell cycle arrest". The results which are related to cell cycle control were selected. The selection criteria of the target articles used for this review included also key cell cycle molecules such as p53, pRB, p21, p16, mTOR, p27, etc. The results were not evaluated statistically. The mechanistic target of rapamycin (mTOR) has been claimed to be key molecule in switching on/off senescence/quiescence. Specifically, although maximal p53 activation blocks mTOR and causes quiescence, partial p53 activation sustains mTOR activity and causes senescence subsequently. In broader perspective, quiescence occurs due to lack of nutrition and growth factors whereas senescence takes place due to aging and serious DNA damages. Contrary to quiescence, senescence is a degenerative process ensuing a certain cell death. We highlighted several differences between senescence and quiescence and their key molecules in this review. Whereas quiescence (cell cycle arrest) is only one half of the senescence, the other half is growth stimulation which causes actual senescence phenotype.
There is an increased airway inflammation in the pathogenesis of chronic obstructive pulmonary disease (COPD), and it has been suggested that there may also be problem in the apoptosis and renewal of cells. However, there are limited human airway cell studies, in particular those from larger airways such as bronchi. We cultured primary human bronchial epithelial cells (HBECs) from bronchial explants of smokers (n = 6) without COPD and smokers with COPD (n = 8). Apoptosis was studied by fluorescence activated cell sorting. qRT-PCR was used to assess mRNA expression for proteins involving apoptosis including p21(CIP1/WAF1), p53, caspase-8 and caspase-9. Although there was no difference in the rate of viable cells between cells from smokers and COPDs, the level of early apoptotic cells was significantly increased in COPD cells [mean ± standard error of mean (SEM) = 4.86 ± 3.2 %, p = 0.015] as compared to smokers (mean ± SEM = 2.71 ± 1.62 %). In contrast, the rate of late apoptotic cells was significantly decreased in COPD cells (mean ± SEM = 9.82 ± 5.71 %) comparing to smokers (mean ± SEM = 15.21 ± 5.08 %, p = 0.003). Although expression of mRNA for p21(CIP1/WAF1) and caspase-9 was similar in both groups, p53 and caspase-8 mRNA expression was significantly greater in COPD cells. These findings suggest that HBEC apoptosis is increased in COPD, and that this involves p53 and caspase-8 pathways.
The prevalence of different resistance genes was investigated in lactobacilli of human and dairy origin by PCR. The presence of erm, van, tet, and cat-TC genes were determined in 16 raw milk, 15 cream, 10 yogurt, 50 hand-made cheese, and 20 industrially produced white-cheese samples of dairy origin and 16 mouth, 32 fecal, and 36 vaginal samples from different subjects of human origin. Lactobacilli of dairy and human origin were found to carry only erm(B) and tet(M) genes. The majority of the isolates, Lactobacillus crispatus (61), Lactobacillus gasseri (49), Lactobacillus plantarum (80) studied were found to harbor either erm(B) or tet(M) gene or both. No resistant lactobacilli was found in raw-milk and cream samples. All the human fecal samples and the majority of vaginal (29 of 36) and mouth (10 of 14) samples were found to carry the resistance genes. While a third of the hand-made cheeses carried resistant lactobacilli only one industrially produced cheese was found to carry resistant lactobacilli. Furthermore, the genes were found in the non-starter species, Lactobacillus acidophilus and Lb. plantarum, indicating that industrially produced cheeses in this respect could be considered more favorable. These results indicate that drug resistance seems to be very common in Turkey. Even though the number of dairy samples harboring the resistance genes (17 of 111) is smaller in regards to human samples, 10% of them were still found to carry the resistance genes as well. The presence of the resistance genes in majority of the samples of human origin and in minority of the samples of dairy origin indicates that drug resistance may be acquired in the intestinal tract during passage and spread to dairy products by the hands of workers during production.
Basal cell carcinoma (BCC) is the most common tumor in humans. Reduced expression of sirtuins interferes with DNA repair, which may cause mutations and genomic instability, and eventually leads to tumor development. In the present study, we investigate the expression levels of SIRT genes in non-tumoral and tumor tissues of patients with BCC. A total of 27 patients (16 males, 11 females) with BCC were included in the study; the mean age was 65.40 ± 10.74 years and mean follow-up was 2.5 ± 0.5 years. There were multiple synchronous lesions in six patients, and the remaining 21 patients had a single lesion. Tumor and non-tumoral tissue samples were collected from all patients, and mRNA expression levels of SIRT1-7 (Sirt1.1, Sirt1.2, Sirt2, Sirt3, Sirt4, Sirt5, Sirt6, and Sirt7) were examined by real-time PCR. The results showed that expressions of SIRT1.1, SIRT1.2, SIRT4, SIRT5, SIRT6, and SIRT7 mRNAs were unchanged in tumor tissues of BCC patients compared with non-tumoral tissue samples. Importantly, the expressions of SIRT2 and SIRT3 mRNAs were significantly reduced in tumor tissue samples from BCC patients compared with non-tumoral tissues (P = 0.02 and P = 0.03, respectively). In light of the previous reports that have demonstrated a link between SIRT proteins and cancer, our findings suggest that SIRT2 and SIRT3 may plan important roles in BCC pathogenesis and could be candidate prognostic biomarkers for BCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.