Multivariate statistical techniques, such as analysis of variance, cluster analysis (CA), correlation analysis, principal component analysis (PCA), and factor analysis (FA), were applied to determine the spatial and temporal variations of dissolved heavy metals in the Tigris River at 7 different sites spread over the river stretch of about 500 km during the period of February 2008 to January 2009. The results indicated that Fe, Cr, and Ni were the most abundant elements in the river water, whereas Cd and As were the less abundant. Cu, Fe, Ni, and Zn showed significant spatial variations, reflecting the influence of anthropogenic activities. The lowest total concentration of heavy metals was found at site 2 downstream of the Dicle Dam due to clean water from the dam. The concentrations of most metals were found lower when compared with results of previous studies due to reduction of the activity of the copper mine plant and the construction of two dams on the river. The lowest total concentrations were determined in February due to high precipitation and snow melts. Hierarchical agglomerative CA classified all the sampling sites into three main groups of spatial similarities. Clusters 1 (Maden and Bismil), 2 (Cizre), and 3 (Eğil, Diyarbakır, Batman, and Hasankeyf) corresponded to moderate polluted and relatively low polluted regions, respectively. PCA/FA, CA, and correlation analysis suggest that Cu, Ni, and Zn are controlled by anthropogenic sources.
Diyarbakır is the biggest city and the largest urban settlement in the Tigris Basin in Turkey. It has been gradually developing and growing thanks to the Southeastern Anatolia Project (GAP), and is one of the most important centers of industry, agriculture and animal husbandry in the Tigris Basin. The Tigris River is an important water source for the city, and it serves for irrigation, fishing, recreation and receiving wastewater. With the development of industry, agriculture and the growth of urban population, its pollution has become a serious problem. Pollution from domestic, industrial and agricultural activities has led to deterioration of water quality. In this context, the aim of the present study is to identify point sources of pollution and to assess the surface water quality of the Tigris River in the study area by monitoring physicochemical parameters. Diyarbakır produced a negative impact on the Tigris River water quality, particularly after the WWTP discharge. Concentrations of chemical oxygen demand, organic nitrogen, total nitrogen and total phosphorus increased markedly downstream of Diyarbakır WWTP discharge point. During the summer, the extent of organic pollution was so serious in the stations, downstream of WWTP, that dissolved oxygen became almost absent from the river water. The metal concentrations of all water samples were mostly below or close to the maximum permitted concentration for protection of aquatic life and drinking water.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.