The popularity of Convolutional Neural Network (CNN) in the field of Image Processing and Computer Vision has motivated researchers and industrialist experts across the globe to solve different challenges with high accuracy. The simplest way to train a CNN classifier is to directly feed the original RGB pixels images into the network. However, if we intend to classify images directly with its compressed data, the same approach may not work better, like in case of JPEG compressed images.This research paper investigates the issues of modifying the input representation of the JPEG compressed data, and then feeding into the CNN. The architecture is termed as DCT-CompCNN. This novel approach has shown that CNNs can also be trained with JPEG compressed DCT coefficients, and subsequently can produce a better performance in comparison with the conventional CNN approach.The efficiency of the modified input representation is tested with the existing ResNet-50 architecture and the proposed DCT-CompCNN architecture on a public image classification datasets like Dog Vs Cat and CIFAR-10 datasets, reporting a better performance.
JPEG is one of the popular image compression algorithms that provide efficient storage and transmission capabilities in consumer electronics, and hence it is the most preferred image format over the internet world. In the present digital and Big-data era, a huge volume of JPEG compressed document images are being archived and communicated through consumer electronics on daily basis. Though it is advantageous to have data in the compressed form on one side, however, on the other side processing with off-the-shelf methods becomes computationally expensive because it requires decompression and recompression operations. Therefore, it would be novel and efficient, if the compressed data are processed directly in their respective compressed domains of consumer electronics. In the present research paper, we propose to demonstrate this idea taking the case study of printed text line segmentation. Since, JPEG achieves compression by dividing the image into non overlapping 8×8 blocks in the pixel domain and using Discrete Cosine Transform (DCT); it is very likely that the partitioned 8×8 DCT blocks overlap the contents of two adjacent text-lines without leaving any clue for the line separator, thus making text-line segmentation a challenging problem. Two approaches of segmentation have been proposed here using the DC projection profile and AC coefficients of each 8×8 DCT block. The first approach is based on the strategy of partial decompression of selected DCT blocks, and the second approach is with intelligent analysis of F10 and F11 AC coefficients and without using any type of decompression. The proposed methods have been tested with variable font sizes, font style and spacing between lines, and a good performance is reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.