Silicalite-1 films (thickness = 400 nm) supported on both sides of glass plates (SL/G) were prepared, and hemicyanine dyes (HC-n) with different alkyl chain lengths (n, n = 3, 6, 9, 12, 15, 18, 22, and 24) were included into the silicalite-1 films by dipping SL/Gs into each methanol solution of HC-n (1 mM) for 1 d. The included numbers of HC-n per channel (N(C)) generally decreased with increasing n; that is, they were 6.4, 23.1, 15.4, 8.2, 5.7, 3.5, 0.9, and 1.2 molecules per channel, respectively. The d(33) value gradually increased with increasing n but decreased when n > 18; that is, they were 1.12, 0.50, 2.25, 3.59, 4.99, 5.30, 1.71, and 2.57 pm V(-1), respectively. However, d(33)/N(C) progressively increased with increasing n. The d(31) values were approximately 100 times smaller than the corresponding d(33) values, and the average d(33)/d(31) ratio was 109, which is higher than those of Langmuir-Blodgett (LB) films and poled polymers of nonlinear optical (NLO) dyes, by approximately 2-5 and approximately 30-50 times, respectively. The estimated average tilted angle of the dyes with respect to the channel direction was 7.7 degrees, and the calculated average order parameter was 0.97, which is approximately 480 times higher than the values observed from poled polymers. The degree of uniform alignment (DUA) generally increased with increasing n. The progressive increase of both DUA and d(33)/N(C) with n is attributed to the increase in the tendency of HC-n to enter hydrophobic silicalite-1 channels with the hydrophobic alkyl chain first. A more than 134-fold increase in DUA was observed upon increasing n from 6 to 24. The DUA of HC-24 in the silicalite-1 film reached close to 1. Although the observed d(33) values were lower than those of the LB films of NLO dyes due to very small dye densities of the silicalite films, this methodology bears a great potential to be developed into the methods for preparing practically viable NLO films.
Zeolite-intercalated semiconductor quantum dots (QDs) have long been proposed to give very high third-order nonlinear optical (3NLO) responses. However, measurements of their 3NLO responses have not been possible due to the lack of methods to prepare optically transparent QD-incorporating zeolite films supported on optically transparent substrates and to confine QDs only within zeolite interiors. We found that the zeolite-Y films grown on indium-tin-oxide-coated glass plates (Ygs) remain firmly bonded to the substrates during ion exchange with Pb2+ ions, drying, and formation of PbS QDs by treating Pb2+ ions with H2S. A series of Ygs encapsulating different numbers (n = 0, 8, 14, 23, and 33) of PbS in a unit cell [(PbS)n-Yg] were prepared. The PbS QDs were expelled by adsorbed moisture to the external surfaces, and the expelled QDs formed large QDs. Coating of the (PbS)n-Ygs with octadecyltrimethoxysilane results in effective confinement of the QDs within the internal pores. The zeolite-encapsulated PbS QDs showed remarkably high 3NLO activities at 532 and 1064 nm which are unparalleled by other PbS QDs dispersed in other matrixes.
Ultraviolet (UV) photodissociation (PD) experiments using 266 nm light were performed for a series of phosphopeptide cations in a Fourier transform mass spectrometer. The objective of the experiments was to determine whether 266 nm UV irradiation on the phosphopeptide cations would induce unique peptide backbone dissociation. In addition, the general behavior of the phosphate loss (-80 or -98 Da) was monitored, particularly for those phosphopeptides with a phosphotyrosine residue that itself is a UV chromophore. For phosphopeptides with a UV chromophore, their photodissociation behavior was very similar to that of low-energy sustained off-resonance irradiation collisionally activated dissociation (SORI-CAD), with a few exceptions. For example, b- and y-type peptide backbone fragments were prevalent, and their dephosphorylation behavior was consistent with that of the SORI-CAD results. For phosphoserine peptides, the loss of a phosphate group was always observed. On the other hand, for phosphotyrosine peptides, the phosphate loss was found to be dependent on the presence of a basic amino group in the sequence and the charge state of the precursor ions, in agreement with the CAD results in the literature. However, hydrogen atom loss or aromatic side chain loss, which is known to be the excited state specific fragmentation pathway, was rarely observed in our 266 nm UV PD experiments, in contrast to the previous UV PD literature (particularly at 220 nm). The mechanism for these observations is described in terms of dominant internal conversion followed by intramolecular vibrational energy redistribution (IVR).
3,4-Di-(2 -hydroxyethoxy)-4 -nitrostilbene (2) was prepared by the reaction of 2-iodoethanol with 3,4-dihydroxy-4 -nitrostilbene. Diol 2 was condensed with 2,4-toluenediisocyanate, 3,3 -dimethoxy-4,4 -biphenylenediisocyanate and 1,6-hexamethylenediisocyanate to yield novel Y-type polyurethanes 3-5 containing dioxynitrostilbene as a non-linear optical (NLO)-chromophore. Polymers 3-5 were soluble in common organic solvents, such as acetone and DMF. These polymers showed thermal stability up to 280 • C in TGA thermograms with T g values in the range of 100-143 • C in DSC thermograms. The approximate lengths of aligned NLO-chromophores of the polymers estimated from AFM images were around 2 nm. The SHG coefficients (d 33 ) of poled polymer films were around 4.5 × 10 −8 esu. Poled polymer films had improved temporal and long-term thermal stability owing to the hydrogen bonding of urethane linkage and the main-chain character of the polymer structure, which are acceptable for NLO device applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.