Abstract. In the present study, we assessed the effect of the ethanolic extract of the seeds of Cassia obtusifolia (COE) on the learning and memory impairments induced by scopolamine or transient bilateral common carotid artery occlusion (2VO). In a study of the cholinergic dysfunction induced by scopolamine, single COE (25, 50, or 100 mg / kg, p.o.) administration significantly attenuated scopolamine-induced cognitive impairments as determined by the passive avoidance and Y-maze tasks (P<0.05) and also reduced escape-latency on the Morris water maze task (P<0.05). In the 2VO study, COE (50 mg / kg, p.o.) significantly reversed 2VO-induced cognitive impairments in mice by the passive avoidance and the Y-maze tasks (P<0.05). Moreover, COE (50 mg / kg, p.o.) also reduced escape-latency and prolonged swimming time in the target quadrant during a probe trial of the Morris water maze task (P<0.05). In an in vitro study, COE was found to inhibit acetylcholinesterase activity in a dose-dependent manner (IC 50 value: 81.6 µg / ml). Furthermore, COE also inhibited acetylcholinesterase activity in an ex vivo study. These results suggest that COE attenuates memory impairment induced by scopolamine or 2VO and that these effects are mediated by enhancing the cholinergic nervous system via acetylcholinesterase inhibition.
In the present study, we investigated the effect of ethanolic extract of the seed of Zizyphus jujuba var. spinosa (EEZS) on cholinergic blockade-induced memory impairment in mice. Male ICR mice were treated with EEZS. The behavioral tests were conducted using the passive avoidance, the Y-maze, and the Morris water maze tasks. EEZS (100 or 200 mg/kg, p.o.) significantly ameliorated the scopolamine-induced cognitive impairment in our present behavioral tasks without changes of locomotor activity. The ameliorating effect of EEZS on scopolamine-induced memory impairment was significantly reversed by a sub-effective dose of MK-801 (0.0125 mg/kg, s.c.). In addition, single administration of EEZS in normal naïve mouse enhanced latency time in the passive avoidance task. Western blot analysis was employed to confirm the mechanism of memory-ameliorating effect of EEZS. Administration of EEZS (200 mg/kg) increased the level of memory-related signaling molecules, including phosphorylation of extracellular signal-regulated kinase or cAMP response element-binding protein in the hippocampal region. Also, the time-dependent expression level of brain-derived neurotrophic factor by the administration of EEZS was markedly increased from 3 to 9 h. These results suggest that EEZS has memory-ameliorating effect on scopolamine-induced cognitive impairment, which is mediated by the enhancement of the cholinergic neurotransmitter system, in part, via NMDA receptor signaling, and that EEZS would be useful agent against cognitive dysfunction such as Alzheimer’s disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.