We present a series of almost settled inapproximability results for three fundamental problems. The first in our series is the subexponential-time inapproximability of the maximum independent set problem, a question studied in the area of parameterized complexity. The second is the hardness of approximating the maximum induced matching problem on bounded-degree bipartite graphs. The last in our series is the tight hardness of approximating the k-hypergraph pricing problem, a fundamental problem arising from the area of algorithmic game theory. In particular, assuming the Exponential Time Hypothesis, our two main results are: *
We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g., [Mar08; FGMS12; DF13]), are whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT be the optimum and N be the size of the input, is there an algorithm that runs in t(OPT) poly(N ) time and outputs a solution of size f (OPT), for any functions t and f that are independent of N (for Clique, we want f (OPT) = ω(1))?In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation algorithm, i.e., there is no o(OPT)-FPT-approximation algorithm for Clique and no f (OPT)-FPT-approximation algorithm for DomSet, for any function f (e.g., this holds even if f is an exponential or the Ackermann function). In fact, our results imply something even stronger: The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Din16; MR16], which states that no 2 o(n) -time algorithm can distinguish between a satisfiable 3SAT formula and one which is not even (1 − ε)-satisfiable for some constant ε > 0.Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum Biclique, the problem of finding maximum subgraphs with hereditary properties (e.g., Maximum Induced Planar Subgraph), and Maximum Induced Matching in bipartite graphs. Previously only exact versions of these problems were known to be W
Graph product is a fundamental tool with rich applications in both graph theory and theoretical computer science.
It was recently found that there are very close connections between the existence of additive spanners (subgraphs where all distances are preserved up to an additive stretch), distance preservers (subgraphs in which demand pairs have their distance preserved exactly), and pairwise spanners (subgraphs in which demand pairs have their distance preserved up to a multiplicative or additive stretch) [Abboud-Bodwin SODA '16, Bodwin-Williams SODA '16]. We study these problems from an optimization point of view, where rather than studying the existence of extremal instances we are given an instance and are asked to find the sparsest possible spanner/preserver. We give an O(n 3/5+ε )-approximation for distance preservers and pairwise spanners (for arbitrary constant ε > 0). This is the first nontrivial upper bound for either problem, both of which are known to be as hard to approximate as Label Cover. We also prove Label Cover hardness for approximating additive spanners, even for the cases of additive 1 stretch (where one might expect a polylogarithmic approximation, since the related multiplicative 2-spanner problem admits an O(log n)-approximation) and additive polylogarithmic stretch (where the related multiplicative spanner problem has an O(1)-approximation).Interestingly, the techniques we use in our approximation algorithm extend beyond distance-based problem to pure connectivity network design problems. In particular, our techniques allow us to give an O(n 3/5+ε )-approximation for the Directed Steiner Forest problem (for arbitrary constant ε > 0) when all edges have uniform costs, improving the previous best O(n 2/3+ε )-approximation due to Berman et al. [ICALP '11] (which holds for general edge costs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.