Levan polysaccharide is an industrially important natural polymer with unique properties and diverse high-value applications. However, current bottlenecks associated with its large-scale production need to be overcome by innovative approaches leading to economically viable processes. Besides many mesophilic levan producers, halophilic Halomonas smyrnensis cultures hold distinctive industrial potential and, for the first time with this study, the advantage of halophilicity is used and conditions for non-sterile levan production were optimized. Levan productivity of Halomonas cultures in medium containing industrial sucrose from sugar beet and food industry by-product syrup, a total of ten sea, lake and rock salt samples from four natural salterns, as well as three different industrial-grade boron compounds were compared and the most suitable low-cost substitutes for sucrose, salt and boron were specified. Then, the effects of pH control, non-sterile conditions and different bioreactor modes (batch and fed-batch) were investigated. The development of a cost-effective production process was achieved with the highest yield (18.06 g/L) reported so far on this microbial system, as well as the highest theoretical bioconversion efficiency ever reported for levan-producing suspension cultures. Structural integrity and biocompatibility of the final product were also verified in vitro.
Processes influencing the transport of airborne bacterial communities in the atmosphere are poorly understood. Here, we report comprehensive and quantitative evidence of the key factors influencing the transport of airborne bacterial communities by dust plumes in the Eastern Mediterranean. We extracted DNA and RNA from size-resolved aerosols sampled from air masses of different origins, followed by qPCR and high-throughput amplicon sequencing of 16 S ribosomal RNA gene and transcripts. We find that airborne bacterial community composition varied with air mass origin and particle size. Bacterial abundance, alpha diversity and species richness were higher in terrestrially influenced air masses than in marine-influenced air masses and higher in the coarse particle fraction (3.0 to 10.0 µm) than in the fine fraction (0.49 to 1.5 µm). This suggests that airborne bacteria mainly were associated with dust particles or transported as cell aggregates. High abundances of rRNA from human, animal and plant pathogen taxa indicate potential ecological impacts of atmospheric bacterial transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.