Microorganisms carried by dust storms are transported through the atmosphere and may affect human health and the functionality of microbial communities in various environments. Characterizing the dust-borne microbiome in dust storms of different origins or that followed different trajectories provides valuable data to improve our understanding of global health and environmental impacts. We present a comparative study on the diversity of dust-borne bacterial communities in dust storms from three distinct origins (North Africa, Syria and Saudi Arabia) and compare them with local bacterial communities sampled on clear days, all collected at a single location: Rehovot, Israel. Storms from different dust origins exhibited distinct bacterial communities, with signature bacterial taxa. Dust storms were characterized by a lower abundance of selected antibiotic resistance genes (ARGs) compared with ambient dust, asserting that the origin of these genes is local and possibly anthropogenic. With the progression of the storm, the storm-borne bacterial community showed increasing resemblance to ambient dust, suggesting mixing with local dust. These results show, for the first time, that dust storms from different sources display distinct bacterial communities, suggesting possible diverse effects on the environment and public health.
Microbial communities play a vital role in biogeochemical cycles, allowing the biodegradation of a wide range of pollutants. The composition of the community and the interactions between its members affect degradation rate and determine the identity of the final products. Here, we demonstrate the application of sequencing technologies and metabolic modeling approaches towards enhancing biodegradation of atrazine-a herbicide causing environmental pollution. Treatment of agriculture soil with atrazine is shown to induce significant changes in community structure and functional performances. Genome-scale metabolic models were constructed for Arthrobacter, the atrazine degrader, and four other non-atrazine degrading species whose relative abundance in soil was changed following exposure to the herbicide. By modeling community function we show that consortia including the direct degrader and non-degrader differentially abundant species perform better than Arthrobacter alone. Simulations predict that growth/degradation enhancement is derived by metabolic exchanges between community members. Based on simulations we designed endogenous consortia optimized for enhanced degradation whose performances were validated in vitro and biostimulation strategies that were tested in pot experiments. Overall, our analysis demonstrates that understanding community function in its wider context, beyond the single direct degrader perspective, promotes the design of biostimulation strategies.These authors contributed equally:
Microbial-induced CaCO3 precipitation (MICP) via urea-hydrolysis (ureolysis) is an emerging soil improvement technique for various civil engineering and environmental applications. In-situ application of MICP in soils is performed either by augmenting the site with ureolytic bacteria or by stimulating indigenous ureolytic bacteria. Both of these approaches may lead to changes in the indigenous bacterial population composition and to the accumulation of large quantities of ammonium. In this batch study, effective ureolysis was stimulated in coastal sand from a semiarid environment, with low initial ureolytic bacteria abundance. Two different carbon sources were used: yeast-extract and molasses. No ureolysis was observed in their absence. Ureolysis was achieved using both carbon sources, with a higher rate in the yeast-extract enrichment resulting from increased bacterial growth. The changes to the indigenous bacterial population following biostimulation of ureolysis were significant: Bacilli class abundancy increased from 5% in the native sand up to 99% in the yeast-extract treatment. The sand was also enriched with ammonium-chloride, where ammonia-oxidation was observed after 27 days, but was not reflected in the bacterial population composition. These results suggest that biostimulation of ureolytic bacteria can be applied even in a semiarid and nutrient-poor environment using a simple carbon source, that is, molasses. The significant changes to bacterial population composition following ureolysis stimulation could result in a decrease in trophic activity and diversity in the treated site, thus they require further attention.
Abstract. Microbial-induced CaCO 3 precipitation (MICP) is an innovative technique that harnesses bacterial activity for the modification of the physical properties of soils. Since stimulation of MICP by urea hydrolysis in natural soils is likely to be affected by interactions between ureolytic and non-ureolytic bacteria, we designed an experiment to examine the interactions between ureolytic and non-ureolytic bacteria and the effect of these interactions on MICP. An artificial groundwater-based rich medium was inoculated with two model species of bacteria, the ureolytic species Sporosarcina pasteurii and the non-ureolytic species Bacillus subtilis. The control treatment was inoculated with a pure culture of S. pasteurii. The following parameters were monitored during the course of the experiment: optical density, pH, the evolution of ammonium, dissolved calcium and dissolved inorganic carbon. The results showed that dissolved calcium was precipitated as CaCO 3 faster in the mixed culture than in the control, despite less favorable chemical conditions in the mixed culture, i.e., lower pH and lower CO 2− 3 concentration. B. subtilis exhibited a considerably higher growth rate than S. pasteurii, resulting in higher density of bacterial cells in the mixed culture. We suggest that the presence of the non-ureolytic bacterial species, B. subtilis, accelerated the MICP process, via the supply of nucleation sites in the form of non-ureolytic bacterial cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.