Aim To evaluate the effect of low‐level laser therapy (LLLT) on the success rate of inferior alveolar nerve blocks (IANB) in mandibular molar teeth with symptomatic irreversible pulpitis (SIP). Methodology Eighty‐eight patients who were diagnosed with SIP were randomly divided into two groups: the group in which only IANB was applied and the group in which IANB + LLLT was applied. IANB was applied to patients in the control group with 4% articaine. LLLT was applied to the patients in the experimental group in addition to IANB. The pain experienced during the operation was evaluated using a visual analog scale. If the patients reported moderate or severe pain during the treatment, the IANB was defined as unsuccessful. Pearson's chi‐square test was used to analyse anaesthetic success rates. Results Whilst the anaesthesia success rate was 34% in the group where only IANB was applied, it was 57% in the group in which LLLT was applied in addition to IANB. There was a significant difference between the groups (p = .032). Conclusions The application of LLLT to support IANB in mandibular molar teeth with SIP increased the success of anaesthesia. However, it was insufficient for a complete pulpal anaesthesia.
Abstract. Engineering structures, like bridges, dams and towers are designed by considering temperature changes, earthquakes, wind, traffic and pedestrian loads. However, generally, it can not be estimated that these structures may be affected by special, complex and different loads. So it could not be known whether these loads are dangerous for the structure and what the response of the structures would be to these loads. Such a situation occurred on the Bosporus Bridge, which is one of the suspension bridges connecting the Asia and Europe continents, during the Eurasia Marathon on 2 October 2005, in which 75 000 pedestrians participated. Responses of the bridge to loads such as rhythmic running, pedestrian walking, vehicle passing during the marathon were observed by a real-time kinematic (RTK) Global Positioning System (GPS), with a 2.2-centimeter vertical accuracy. Observed responses were discussed in both time domain and frequency domain by using a time series analysis. High (0.1-1 Hz) and low frequencies (0.00036-0.01172 Hz) of observed bridge responses under 12 different loads which occur in different quantities, different types and different time intervals were calculated in the frequency domain. It was seen that the calculated high frequencies are similar, except for the frequencies of rhythmic running, which causes a continuously increasing vibration. Any negative response was not determined, because this rhythmic effect continued only for a short time. Also when the traffic load was effective, explicit changes in the bridge movements were determined. Finally, it was seen that bridge frequencies which were calculated from the observations and the finite element model were harmonious. But the 9th natural frequency value of the bridge under all loads, except rhythmic running could not be determined with observations.
is examined by use of measurements in 5 Istanbul GPS Triangulation Network (IGNA) benchmark points, with five repeatability measurements up to 50 km from the station. The CORS-TR network RTK solution is used at the same points, and the results are compared. The measured coordinates produced by the two RTK solutions are compared with the IGNA point coordinates. Satellite geometry, initialisation time and the standard deviation of repeatability are also determined. The differences between measured and known coordinates are calculated as 1-2 cm horizontally and close to 3 cm vertically using the YLDZ single base RTK method.Después de la década de los 90, el Sistema Global de Navegación por satélite/Sistema de Posicionamiento Global (GNSS/GPS, en inglés), basado en tecnología de Navegación Cinética Satelital en Tiempo Real (RTK, del inglés Real Time Kinematic) se convirtió en la técnica preferida en el mundo y que todavía se utiliza en varias aplicaciones como el monitoreo, sistemas de alerta temprana y mapeo e ingeniería de aplicativos. Para finales de 2008, los aplicativos de ingeniería utilizan la red de Estaciones de Referencia de Funcionamiento Continuo (CORS-TR, un proyecto establecido en Turquía) para determinar posiciones en tres dimensiones a lo largo del territorio turco. Por otro lado, las estaciones RTK de una sola base han funcionado en Turquía. La YLDZ es una estación de este tipo que fue establecida en la Universidad Técnica de Yildiz por el departamento de Ingeniería Geomática en 2012. En este trabajo se examina el desempeño de la estación YLDZ a través de la medición de cinco puntos de referencia del Sistema de Triangulación GPS de Estambul (IGNA, en inglés) con cinco mediciones repetitivas a más de 50 km de la estación. Similares medidas RTK se hicieron con la red CORS-TR y se compararon los resultados. Las dos mediciones producidas por las soluciones RTK se compararon con los puntos de coordenadas IGNA. También se determinó la geometría satelital, el tiempo de inicialización y la desviación estándar de la repetibilidad. Las diferencias entre las coordenadas medidas y las coordenadas conocidas se calcularon en un rango de 1-2 centímetros horizontalmente y cerca de 3 centímetros verticalmente para la estación YLDZ con el método RTK. ABSTRACT RESUMEN
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.