In this study, an E-Nose system was realized for the anesthetic dose level prediction. For this purpose, sevoflurane anesthetic agent was measured using the E-Nose system implemented with sensor array of quartz crystal microbalances (QCM). In surgeries, anesthetic agents are given to the patients with carrier gases of oxygen (02) and nitrous oxide (N20). Frequency changes on QCM sensors to the eight sevoflurane anesthetic dose levels were recorded via RS-232 serial port. A multilayer feed forward artificial neural network (MLNN) structure was used to provide the relationship between the frequency change and the anesthetic dose level. The MLNNs were trained with the measured data using Levenberg-Marquardt algorithm. Then, the trained MLNNs were tested with random data. The results have showed that, acceptable anesthetic dose level predictions have been obtained successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.