In this study, normal EEG series recorded from healthy volunteers and epileptic EEG series recorded from patients within and without seizure are classified by using Multilayer Neural Network (MLNN) architectures with respect to several time domain entropy measures such as Shannon Entropy (ShanEn), Log Energy Entropy (LogEn), and Sample Entropy (Sampen). In tests, the MLNN is performed with several numbers of neurons for both one hidden layer and two hidden layers. The results show that segments in seizure have significantly lower entropy values than normal EEG series. This result indicates an important increase of EEG regularity in epilepsy patients. The LogEn approach, which has not been experienced in EEG classification yet, provides the most reliable features into the EEG classification with very low absolute error as 0.01. In particular, the MLNN can be proposed to distinguish the seizure activity from the seizure-free epileptic series where the LogEn values are considered as signal features that characterize the degree of EEG complexity. The highest classification accuracy is obtained for one hidden layer architecture.
In the present study, the Singular Spectrum Analysis (SSA) is applied to sleep EEG segments collected from healthy volunteers and patients diagnosed by either psycho physiological insomnia or paradoxical insomnia. Then, the resulting singular spectra computed for both C3 and C4 recordings are assigned as the features to the Artificial Neural Network (ANN) architectures for EEG classification in diagnose. In tests, singular spectrum of particular sleep stages such as awake, REM, stage1 and stage2, are considered. Three clinical groups are successfully classified by using one hidden layer ANN architecture with respect to their singular spectra. The results show that the SSA can be applied to sleep EEG series to support the clinical findings in insomnia if ten trials are available for the specific sleep stages. In conclusion, the SSA can detect the oscillatory variations on sleep EEG. Therefore, different sleep stages meet different singular spectra. In addition, different healthy conditions generate different singular spectra for each sleep stage. In summary, the SSA can be proposed for EEG discrimination to support the clinical findings for psycho-psychological disorders.
In this study, an E-Nose system was realized for the anesthetic dose level prediction. For this purpose, sevoflurane anesthetic agent was measured using the E-Nose system implemented with sensor array of quartz crystal microbalances (QCM). In surgeries, anesthetic agents are given to the patients with carrier gases of oxygen (02) and nitrous oxide (N20). Frequency changes on QCM sensors to the eight sevoflurane anesthetic dose levels were recorded via RS-232 serial port. A multilayer feed forward artificial neural network (MLNN) structure was used to provide the relationship between the frequency change and the anesthetic dose level. The MLNNs were trained with the measured data using Levenberg-Marquardt algorithm. Then, the trained MLNNs were tested with random data. The results have showed that, acceptable anesthetic dose level predictions have been obtained successfully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.