The perception of others’ actions supports important skills such as communication, intention understanding, and empathy. Are mechanisms of action processing in the human brain specifically tuned to process biological agents? Humanoid robots can perform recognizable actions, but can look and move differently from humans, and as such, can be used in experiments to address such questions. Here, we recorded EEG as participants viewed actions performed by three agents. In the Human condition, the agent had biological appearance and motion. The other two conditions featured a state-of-the-art robot in two different appearances: Android, which had biological appearance but mechanical motion, and Robot, which had mechanical appearance and motion. We explored whether sensorimotor mu (8–13 Hz) and frontal theta (4–8 Hz) activity exhibited selectivity for biological entities, in particular for whether the visual appearance and/or the motion of the observed agent was biological. Sensorimotor mu suppression has been linked to the motor simulation aspect of action processing (and the human mirror neuron system, MNS), and frontal theta to semantic and memory-related aspects. For all three agents, action observation induced significant attenuation in the power of mu oscillations, with no difference between agents. Thus, mu suppression, considered an index of MNS activity, does not appear to be selective for biological agents. Observation of the Robot resulted in greater frontal theta activity compared to the Android and the Human, whereas the latter two did not differ from each other. Frontal theta thus appears to be sensitive to visual appearance, suggesting agents that are not sufficiently biological in appearance may result in greater memory processing demands for the observer. Studies combining robotics and neuroscience such as this one can allow us to explore neural basis of action processing on the one hand, and inform the design of social robots on the other.
Uncanny valley refers to humans' negative reaction to almost-but-not-quite-human agents. Theoretical work proposes prediction violation as an explanation for uncanny valley but no empirical work has directly tested it. Here, we provide evidence that supports this theory using event-related brain potential recordings from the human scalp. Human subjects were presented images and videos of three agents as EEG was recorded: a real human, a mechanical robot, and a realistic robot in between. The real human and the mechanical robot had congruent appearance and motion whereas the realistic robot had incongruent appearance and motion. We hypothesize that the appearance of the agent would provide a context to predict her movement, and accordingly the perception of the realistic robot would elicit an N400 effect indicating the violation of predictions, whereas the human and the mechanical robot would not. Our data confirmed this hypothesis suggesting that uncanny valley could be explained by violation of one's predictions about human norms when encountered with realistic but artificial human forms. Importantly, our results implicate that the mechanisms underlying perception of other individuals in our environment are predictive in nature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.