We have characterized a novel autosomal recessive Crouzon-like craniosynostosis syndrome in a 12-affected member family from Antakya, Turkey, the presenting features of which include: multiple suture synostosis, midface hypoplasia, variable degree of exophthalmos, relative prognathism, a beaked nose, and conductive hearing loss. Homozygosity mapping followed by targeted next-generation sequencing identified a c.479+6T>G mutation in the interleukin 11 receptor alpha gene (IL11RA) on chromosome 9p21. This donor splice-site mutation leads to a high percentage of aberrant IL11RA mRNA transcripts in an affected individual and altered mRNA splicing determined by in vitro exon trapping. An extended IL11RA mutation screen was performed in a cohort of 79 patients with an initial clinical diagnosis of Crouzon syndrome, pansynostosis, or unclassified syndromic craniosynostosis. We identified mutations segregating with the disease in five families: a German patient of Turkish origin and a Turkish family with three affected sibs all of whom were homozygous for the previously identified IL11RA c.479+6T>G mutation; a family with pansynostosis with compound heterozygous missense mutations, p.Pro200Thr and p.Arg237Pro; and two further Turkish families with Crouzon-like syndrome carrying the homozygous nonsense mutations p.Tyr232* and p.Arg292*. Using transient coexpression in HEK293T and COS7 cells, we demonstrated dramatically reduced IL11-mediated STAT3 phosphorylation for all mutations. Immunofluorescence analysis of mouse Il11ra demonstrated specific protein expression in cranial mesenchyme which was localized around the coronal suture tips and in the lambdoidal suture. In situ hybridization analysis of adult zebrafish also detected zfil11ra expression in the coronal suture between the overlapping frontal and parietal plates. This study demonstrates that mutations in the IL11RA gene cause an autosomal recessive Crouzon-like craniosynostosis.
Preaxial polydactyly is a common limb malformation in humans with variable clinical expression. Different types of triphalangeal thumb-preaxial polydactyly phenotypes were mapped to the chromosome 7q36 region. We studied a large Turkish family of 69 individuals, of whom 22 individuals were affected. In all, 11 affected family members were clinically and radiologically evaluated. All affected individuals had a triphalangeal thumb and a preaxial (hypoplastic) extra digit bilaterally, with minimal intrafamilial variation. No feet involvement was observed. Linkage and haplotype analyses using 20 informative meioses confirmed the 7q36 region contained the LIMBR1 gene. Maximum logarithm of the odds (LOD) scores were obtained with DNA markers D7S550 and D7S2423. We have further identified a novel C to T alteration at position 4909 bp in the critical zone of polarizing activity regulatory sequence (ZRS) region, in the intron 5, of the LMBR1 gene. One affected male with homozygous status and no phenotypic difference from affected family members with heterozygous status represented the first homozygote case of the triphalangeal thumb-preaxial polydactyly phenotype.
Aims: This study aimed to identify the underlying genetic defect of a large Turkish X linked nystagmus (NYS) family. Methods: Both Xp11 and Xq26 loci were tested by linkage analysis. The 12 exons and intron-exon junctions of the FRMD7 gene were screened by direct sequencing. X chromosome inactivation analysis was performed by enzymatic predigestion of DNA with a methylationsensitive enzyme, followed by PCR of the polymorphic CAG repeat of the androgen receptor gene. Results: The family contained 162 individuals, among whom 28 had NYS. Linkage analysis confirmed the Xq26 locus. A novel missense c.686C.G mutation, which causes the substitution of a conserved arginine at amino acid position 229 by glycine (p.R229G) in exon 8 of the FRMD7 gene, was observed. This change was not documented in 120 control individuals. The clinical findings in a female who was homozygous for the mutation were not different from those of affected heterozygous females. Skewed X inactivation was remarkable in the affected females of the family. Conclusions: A novel p.R229G mutation in the FRMD7 gene causes the NYS phenotype, and skewed X inactivation influences the manifestation of the disease in X linked NYS females.
Colobomatous macrophthalmia with microcornea syndrome (OMIM 602499) is a rare, autosomal dominant malformation characterized by microcornea, uveal coloboma, axial enlargement of the globe, and myopia. Using what is currently the largest described pedigree and candidate localization approach, we first excluded the candidate genes PAX2, PAX3, PAX6, and PAX9. Subsequently, the chromosome 14q24 region containing the CHX10, SIX1, and SIX4 genes were also excluded. Positive LOD scores were obtained with the DNA markers selected from the 2p23-p16 region. A maximum pairwise LOD score of 3.61 (Theta = 0) was noted with the DNA marker D2S1788. Haplotype analysis positioned the locus between DNA markers D2S2263 and D2S1352 within a 22 Mb physical interval. This region contains major candidate genes, such as SIX2, SIX3, and CYP1B1; however, mutation analysis did not identify a causative mutation in these genes. Macrophthalmia, colobomatous, with microcornea (MACOM) is proposed as the gene symbol for this malformation linked to 2p23-p16.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.