In this study, free radical copolymerization of acrylonitrile (AN)–vinyl acetate (VAc) was performed for five different feed ratio of VAc (wt %) by using ammonium persulfate (APS) in the aqueous medium. The effect of VAc content on the spectrophotometric and thermal properties of AN–VAc copolymers was investigated by Fourier Transform Infrared–Attenuated Total Reflectance spectrophotometer (FTIR–ATR), differential scanning calorimeter (DSC), and thermal gravimetric analyzer (TGA). Thermal stability of homopolymer of AN is improved after being copolymerized. The electrospun P(AN‐co‐VAc) nanofibers were fabricated and the effect of VAc content on the morphologic properties of nanofibers was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The viscosity of the solution had a significant effect on P(AN‐co‐VAc) electrospinning and the nanofiber morphology. The average diameters of P(AN‐co‐VAc) nanofibers decreased 3.4 times with increasing feed ratio of VAc wt %. The P(AN‐co‐VAc) electrospun nanofiber mats, with the feed ratio of 30 wt % VAc, can be used as a nanofiber membrane in filtration and as a carbon nanofiber precursor for energy storage applications due to high surface to volume ratio, high thermal stability, homogeneous, and thinner nanofiber distribution. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013
Poly (acrylonitrile-co-vinyl acetate)/polypyrrole composite particles with uniform size and morphology have been synthesized using one-step polymerization that involves swelling and coating of polypyrrole (PPy) into P (AN-co-VAc) latex nanoparticles. As an initial stage, free radical copolymerization of acrylonitrile (AN) and vinyl acetate (VAc) was synthesized by emulsion polymerization using ammonium persulfate (APS) and dodecyl benzene sulfonic acid salt (DBSA) as a surfactant. P (AN-co-VAc)/PPy composites were obtained first time by in situ addition of the pyrrole into the reaction medium. The electrospun P (AN-co-VAc)/PPy nanofibers were obtained from the nanoparticles with better properties and the effect of PPy on the morphology of nanofibers was studied by scanning electron microscopy (SEM). High degree of homogeneity and molecular order induced by molecular dispersion of polypyrrole on copolymer matrix without phase separation improve the transport properties and stability of polypyrrole, which are critical for high-performance organic electronics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.