Candida yeasts are frequently isolated from patients with continuous ambulatory peritoneal dialysis peritonitis or other biomaterial‐associated infections. The mouse model of candidal peritonitis was used to study the interaction of Candida cells with end‐point attached heparinized polyethylene (H‐PE) and with polymorphonuclear leukocytes (PMNs) or macrophages (Mφ). Two Candida strains differing in cell surface hydrophobicity and in expression of fibronectin (Fn) binding were used for the study. Cells of both Candida strains adhered at higher numbers to H‐PE surfaces preadsorbed with Fn or with human dialysis fluid (HDF) than to non‐modified H‐PE, supporting a role of Fn in mediating adhesion. C. albicans 4016 cells expressing low hydrophobicity and low binding of soluble Fn demonstrated stronger adhesion to PMNs than the more hydrophobic C. albicans 3248 yeasts, which express high binding of soluble Fn. However, C. albicans 4016 cells were more resistant to phagocytic killing and were hardly eradicated in intraperitoneally infected mice. The animals depleted in PMNs by treatment with CY were neither able to eradicate C. albicans 3248 (rapidly eliminated by normal mice) nor C. albicans 4016 yeasts (with a tendency to persist in the tissues of normal mice).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.