a b s t r a c tWe present a simple mathematical model for river pollution and investigate the effect of aeration on the degradation of pollutant. The model consists of a pair of coupled reaction-diffusion-advection equations for the pollutant and dissolved oxygen concentrations, respectively. The coupling of these equations occurs because of reactions between oxygen and pollutant to produce harmless compounds. Here we consider the steady-state case in one spatial dimension. For simplified cases the model is solved analytically. We also present a numerical approach to the solution in the general case. The extension to the transient spatial model is relatively straightforward. The study is motivated by the crucial problem of water pollution in many countries and specifically within the Tha Chin River in Thailand. For such real situations, simple models can provide decision support for planning restrictions to be imposed on farming and urban practices.
The study of pollution movement is an important basis for solving water quality problems, which is of vital importance in almost every country. This research proposes the motion of flowing pollution by using a mathematical model in one-dimensional advection-dispersion equation which includes terms of decay and enlargement process. We are assuming an added pollutant sources along the river in two cases: uniformly and exponentially increasing terms. The unsteady state analytical solutions are obtained by using the Laplace transformation, and the finite difference technique is utilized for numerical solutions. Solutions are compared by relative error values. The result appears acceptable between the analytical and numerical solutions. Varying the value of the rate of pollutant addition along the river (q) and the arbitrary constant of exponential pollution source term (λ) is displayed to explain the behavior of the incremental concentration. It is shown that the concentration increases as q and λ increase, and the exponentially increasing pollution source is a suitable model for the behavior of incremental pollution along the river. The results are presented and discussed graphically. This work can be applied to other physical situations described by advection-dispersion phenomena which are affected by the increase of those source concentrations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.