The objective of this study was to determine the association of single nucleotide polymorphisms (SNPs) in selected candidate genes with fattening performance traits in a commercial cattle herd. Fifteen SNPs in 12 candidate genes (LEP, FABP4, DGAT1, TG, IGF1, IGF1R, MYF5, LGB, CAPN1, CAST, GHR, and OLR1) were evaluated in 296 purebred Holstein–Friesian bulls using PCR-RFLP (polymerase chain reaction – restriction fragment length polymorphism). Associations between each segregating SNP and genetic merit for fattening performance were quantified using linear mixed models. Traits included in the study were fattening period, final weight, dry matter intake, feed conversion rate, and average daily weight gain. Apart from the general determination of the above-mentioned traits, each trait was evaluated based on the fattening periods between five selected target body weights (W1 = 100 kg, W2 = 200 kg, W3 = 300 kg, W4 = 400 kg, W5 = 450 kg). All markers with the exception of CAPN1 530, IGF1R, TG, and DGAT1 were associated with at least one of the traits. Furthermore, novel associations were observed for LEP × GHR, IGF1 × LEP, FABP4 3691 × FABP4 2834, and FAP4 3533 × LEP interactions. The results of this study confirm some previously reported associations. Moreover, novel associations have been identified, which may be incorporated into breeding programs to improve fattening performance.
Bovine insulin-like growth factor 1 (IGF1), thyroglobulin (TG), diacylglycerol-O-acyltransferase 1 (DGAT1) and myogenic factor 5 (MYF5) genes play an important role in the physiology of lipid and muscle metabolism and are therefore considered as candidate genes for meat production traits in farm animals. The objectives of this study were to investigate single nucleotide polymorphisms (SNPs) in IGF1, TG, DGAT1 and MYF5 genes and to evaluate whether these polymorphisms affected meat colour, tenderness and cooking loss in Holstein cattle. Initially, the SNPs were detected by polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) method. Meat samples (N= 50) derived from M. longissimus thoracis et lumborum (LTL) were used in the current study. Significant differences in variations of meat colour parameters were observed at 24 hours post-mortem. IGF1 was associated with colour parameters of a* and chroma values. In addition, effects of TG were statistically significant on L* and a* values, while, effects of MYF5 were significant on a* value. There was no association of the tested SNPs with meat pH, tenderness and cooking loss. The results presented here may give the valuable information for improving meat colour in cattle.
Possibility of paclitaxel to induce the stemnessrelated characteristics of prostate cancer cells [published online as ahead of print on October 5, 2021].
Olive pollen is one of the main causes of allergic disease in the Mediterranean area. Ten different proteins with allergenic activity have been described in olive pollen, with major allergen Ole e 1. Olea europaea L. may cause allergenic effects of different severity depending on the Ole e 1 content of cultivars. In this paper, we aimed to assess the heterogeneity of two olive cultivars concerning concentrations of the major allergen Ole e 1 during a period of 2 years. Pollens from two most common olive cultivars, known as “Gemlik” and “Celebi,” were analyzed on regular basis. Ole e 1 amounts were measured by double-sandwich enzyme-linked immunosorbent assay (ELISA). The results were expressed as μg of Ole e 1 per μg of total freeze-dried extract. Comparisons of Ole e 1 levels were made both between individual trees and between cultivars. It was analyzed the influence of some meteorological parameters on pollen counts/allergenic content on a local scale, for 2 years. Pollen sampling was carried out continuously for 2 years, using a Hirst-type volumetric trap. “Gemlik” had the higher value (mean ± standard deviation) of Ole e 1 content (2.44 ±0.70 and 1.87 ±1.03 μg/μg, respectively) when compared to “Celebi” (2.16 ±0.86 and 0.20 ±0.30 μg/μg, respectively) in the years 2013 and 2015. In our research, daily variations were observed in pollen samples of two olive cultivars and even different trees of the same cultivar. Furthermore, during certain sampling days, discrepancies between airborne pollen counts and Ole e 1 concentrations were detected for both cultivars. It was found that meteorological changes, especially temperature and precipitation fluctuations, could affect airborne pollen and Ole e 1 allergen levels in the atmosphere. Therefore, pollen samples of different O. europaea cultivars demonstrated great differences in Ole e 1 content. We believe that these findings were a result of alternate bearing behavior modulated by meteorological factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.