<abstract><p>The main objective of the investigation is to broaden the description of Caputo fractional derivatives (in short, CFDs) (of order $ 0 < \alpha < r $) considering all relevant permutations of entities involving $ t_{1} $ equal to $ 1 $ and $ t_{2} $ (the others) equal to $ 2 $ via fuzzifications. Under $ {g\mathcal{H}} $-differentiability, we also construct fuzzy Elzaki transforms for CFDs for the generic fractional order $ \alpha\in(r-1, r) $. Furthermore, a novel decomposition method for obtaining the solutions to nonlinear fuzzy fractional partial differential equations (PDEs) via the fuzzy Elzaki transform is constructed. The aforesaid scheme is a novel correlation of the fuzzy Elzaki transform and the Adomian decomposition method. In terms of CFD, several new results for the general fractional order are obtained via $ g\mathcal{H} $-differentiability. By considering the triangular fuzzy numbers of a nonlinear fuzzy fractional PDE, the correctness and capabilities of the proposed algorithm are demonstrated. In the domain of fractional sense, the schematic representation and tabulated outcomes indicate that the algorithm technique is precise and straightforward. Subsequently, future directions and concluding remarks are acted upon with the most focused use of references.</p></abstract>
In this article, we investigated a deterministic model of pneumonia-meningitis coinfection. Employing the Atangana–Baleanu fractional derivative operator in the Caputo framework, we analyze a seven-component approach based on ordinary differential equations (DEs). Furthermore, the invariant domain, disease-free as well as endemic equilibria, and the validity of the model’s potential results are all investigated. According to controller design evaluation and modelling, the modulation technique devised is effective in diminishing the proportion of incidences in various compartments. A fundamental reproducing value is generated by exploiting the next generation matrix to assess the properties of the equilibrium. The system’s reliability is further evaluated. Sensitivity analysis is used to classify the impact of each component on the spread or prevention of illness. Using simulation studies, the impacts of providing therapy have been determined. Additionally, modelling the appropriate configuration demonstrated that lowering the fractional order from 1 necessitates a rapid initiation of the specified control technique at the largest intensity achievable and retaining it for the bulk of the pandemic’s duration.
<abstract><p>Swift-Hohenberg equations are frequently used to model the biological, physical and chemical processes that lead to pattern generation, and they can realistically represent the findings. This study evaluates the Elzaki Adomian decomposition method (EADM), which integrates a semi-analytical approach using a novel hybridized fuzzy integral transform and the Adomian decomposition method. Moreover, we employ this strategy to address the fractional-order Swift-Hohenberg model (SHM) assuming g$ {\bf H} $-differentiability by utilizing different initial requirements. The Elzaki transform is used to illustrate certain characteristics of the fuzzy Atangana-Baleanu operator in the Caputo framework. Furthermore, we determined the generic framework and analytical solutions by successfully testing cases in the series form of the systems under consideration. Using the synthesized strategy, we construct the approximate outcomes of the SHM with visualizations of the initial value issues by incorporating the fuzzy factor $ \varpi\in[0, 1] $ which encompasses the varying fractional values. Finally, the EADM is predicted to be effective and precise in generating the analytical results for dynamical fuzzy fractional partial differential equations that emerge in scientific disciplines.</p></abstract>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.