An oral route of administration is a most acceptable route for a patient, so we designed chemically cross-linked polyethylene glycol-co-poly(methacrylic acid) oral hydrogels (PEGMA 4000) by free radical polymerization method for pH-responsive colon target delivery of oxaliplatin (OXP). Polyethylene glycol (PEG 4000) was crosslinked chemically with methacrylic acid (MAA) in distilled water. Ammonium peroxodisulfate (APS) and N, N-methylene bisacrylamide (MBA) were used as initiator and cross-linker respectively. OXP was loaded in prepared hydrogels. FTIR, DSC, TGA, SEM, and XRD were conducted for characterization of developed hydrogels which endorsed the formation of new polymeric network. The pH-sensitive behavior of hydrogels was observed by swelling dynamics and equilibrium swelling ratio at low (1.2) and higher pH (7.4). Toxicity study was also conducted on rabbits to evaluate toxicity and biocompatibility of developed carrier system to biological system. Hydrogels with higher PEG 4000 concentration showed maximum swelling and higher drug loading at 7.4 pH. Toxicity study confirmed the developed hydrogels as non-toxic and biocompatible for biological system. Resultantly, these hydrogels can become an excellent candidates for colon targeting of OXP to treat colorectal cancer with no toxicity.
Over the past few years, considerable attention has been focused on carrageenan based bionanocomposites due to their multifaceted properties like biodegradability, biocompatibility, and nontoxicity. Moreover, these composites can be tailored according to the desired purpose by using different nanofillers. The role of ferromagnetic nanoparticles in drug delivery is also discussed here in detail. Moreover, this article also presents a short review of recent research on the different types of the carrageenan based bionanocomposites and applications.
The objective of the current study was to design and optimize prednisolone acetate-loaded chitosan nanoparticles (NPs) through design experts for ophthalmic drug delivery. Chitosan NPs were prepared by ionic gelation using sodium tripolyphosphate (TPP). The effects of variables, such as chitosan concentration, chitosan to TPP mass ratio (ch:TPP), and prednisolone concentration on particle size, zeta potential (ZP), and polydispersity index (PDI), were studied using a three-factor three-level central composite design (CCD), and optimum experimental conditions were determined using the desirability function combined response surface methodology (RSM). Quadratic and reduced quadratic polynomial models were generated to predict and evaluate the independent variables with respect to the dependent variables. The composition of the optimal formulation was determined to be a chitosan concentration of 0.26%, chitosan to TPP mass ratio of 6:1, and drug concentration with respect to chitosan mass of 8.11%. The optimized formulation showed a percentage entrapment efficiency (% EE) of 78.32%, mean particle size of 193.5, PDI of 0.219, ZP of 10.3 mV, and 86.15% cumulative drug release. The morphology of the NPs was found to be nearly spherical in shape by scanning electron microscopy (SEM). Differential scanning calorimetry (DSC) revealed successful loading of the drug in NPs, and FTIR confirmed polymer and drug compatibility.
Abstract:The current study was aimed to formulate a continuous release mucoadhesive buccal tablet containing propranolol HCl. The type and quantities of polymers as well as method of compression were set in a preliminary study (F1-F13). Direct compression method was employed in the main study (F14-F24) using Carbopol ® 934P (CP), ethylcellulose (EC), sodium alginate (SA), hydroxypropyl methylcellulose (HPMC k4M) and carboxymethylcellulose (CMC) as mucoadhesive polymers and were tested for physicochemical tests i.e. swellability, surface pH, mucoadhesive time, mucoadhesive strength, in vitro release etc. Results obtained from the study were optimized using NeuralPower ® 3.1, an artificial intelligence approach. Against the desirability of physicochemical parameters, the software optimized the ingredients as HPMC (150mg), CMC (25mg), CP (20mg) and EC (20mg). Outcome revealed that HPMC primarily contributed to the physicochemical properties of mucoadhesive formulation. To compare prediction, optimized ingredients were formulated (F25) and tested. The swellability index of confirmation formulation (F25) was 102% at 6 h. As predicted, similar release pattern was of F25 was obtained as 26% (0.5h), 34% (1h), 40% (2h), 45% (3h), 50% (4h), 62% (5h), 76% (6h), 85% (7h) and 97% (8h) respectively. For release kinetics, DD solver ® suggested the release of the drug to be non-Fickian.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.