Akt, also known as protein kinase B, plays key roles in cell proliferation, survival and metabolism. Akt hyperactivation contributes to many pathophysiological conditions, including human cancers1–3, and is closely associated with poor prognosis and chemo- or radio-therapeutic resistance4. Phosphorylation of Akt at S473 (ref. 5) and T308 (ref. 6) activates Akt. However, it remains unclear whether further mechanisms account for full Akt activation, and whether Akt hyperactivation is linked to misregulated cell cycle progression, another cancer hallmark7. Here we report that Akt activity fluctuates across the cell cycle, mirroring cyclin A expression. Mechanistically, phosphorylation of S477 and T479 at the Akt extreme carboxy terminus by cyclin-dependent kinase 2 (Cdk2)/cyclin A or mTORC2, under distinct physiological conditions, promotes Akt activation through facilitating, or functionally compensating for, S473 phosphorylation. Furthermore, deletion of the cyclin A2 allele in the mouse olfactory bulb leads to reduced S477/T479 phosphorylation and elevated cellular apoptosis. Notably, cyclin A2-deletion-induced cellular apoptosis in mouse embryonic stem cells is partly rescued by S477D/T479E-Akt1, supporting a physiological role for cyclin A2 in governing Akt activation. Together, the results of our study show Akt S477/T479 phosphorylation to be an essential layer of the Akt activation mechanism to regulate its physiological functions, thereby providing a new mechanistic link between aberrant cell cycle progression and Akt hyperactivation in cancer.
The mechanistic target of rapamycin (mTOR) functions as a critical regulator of cellular growth and metabolism by forming multi-component, yet functionally distinct complexes mTORC1 and mTORC2. Although mTORC2 has been implicated in mTORC1 activation, little is known about how mTORC2 is regulated. Here we report that phosphorylation of Sin1 at T86 and T398 suppresses mTORC2 kinase activity by dissociating Sin1 from mTORC2. Importantly, Sin1 phosphorylation, triggered by S6K or Akt, in a cellular context-dependent manner, inhibits not only insulin/IGF-1-mediated, but also PDGF or EGF-induced Akt phosphorylation by mTORC2, demonstrating a negative regulation of mTORC2 independent of IRS-1 and Grb10. Lastly, a cancer patient-derived Sin1-R81T mutation impairs Sin1 phosphorylation, leading to hyper-mTORC2 activation via bypassing this negative regulation. Together, our work reveals a Sin1 phosphorylation-dependent mTORC2 regulation, providing a potential molecular mechanism by which mutations in the mTORC1/S6K/Sin1 signaling axis might cause aberrant hyper-activation of mTORC2/Akt that facilitates tumorigenesis.
Titanium dioxide nanoparticles (nano-TiO2) are widely used as a photocatalyst in air and water remediation. These nanoparticles are known to induce toxicity; however, their cytotoxic mechanism is not fully understood. In this study, we investigated the underlying mechanism of nano-TiO2-induced cytotoxicity in peripheral blood lymphocytes. We examined the genotoxic effects of nano-TiO2 in lymphocytes using alkaline single-cell gel electrophoresis (Comet) and cytokinesis-block micronucleus (CBMN) assays. Lymphocytes treated with nano-TiO2 showed significantly increased micronucleus formation and DNA breakage. Western-blot analysis to identify proteins involved in the p53-mediated response to DNA damage revealed the accumulation of p53 and activation of DNA damage checkpoint kinases in nano-TiO2-treated lymphocytes. However, p21 and bax, downstream targets of p53, were not affected, indicating that nano-TiO2 does not stimulate transactivational activity of p53. The generation of reactive oxygen species (ROS) in nano-TiO2-treated cells was also observed, andN-acetylcysteine (NAC) supplementation inhibited the level of nano-TiO2-induced DNA damage. Given that ROS-induced DNA damage leads to p53 activation in the DNA damage response, our results suggest that nano-TiO2 induces ROS generation in lymphocytes, thereby activating p53-mediated DNA damage checkpoint signals.
Ionizing radiation (IR), such as X-rays and gamma (γ)-rays, mediates various forms of cancer cell death such as apoptosis, necrosis, autophagy, mitotic catastrophe, and senescence. Among them, apoptosis and mitotic catastrophe are the main mechanisms of IR action. DNA damage and genomic instability contribute to IR-induced cancer cell death. Although IR therapy may be curative in a number of cancer types, the resistance of cancer cells to radiation remains a major therapeutic problem. In this review, we describe the morphological and molecular aspects of various IR-induced types of cell death. We also discuss cytogenetic variations representative of IR-induced DNA damage and genomic instability. Most importantly, we focus on several pathways and their associated marker proteins responsible for cancer resistance and its therapeutic implications in terms of cancer cell death of various types and characteristics. Finally, we propose radiation-sensitization strategies, such as the modification of fractionation, inflammation, and hypoxia and the combined treatment, that can counteract the resistance of tumors to IR.
Reduced therapeutic efficacy of sorafenib, a first-generation multikinase inhibitor, is often observed during the treatment of advanced hepatocellular carcinoma (HCC). Emodin is an active component of Chinese herbs, and is effective against leukemia, lung cancer, colon cancer, pancreatic cancer, and HCC; however, the sensitizing effect of emodin on sorafenib-based HCC therapy has not been evaluated. Here, we demonstrate that emodin significantly improved the anti-cancer effect of sorafenib in HCC cells, such as HepG2, Hep3B, Huh7, SK-HEP-1, and PLC/PRF5. Mechanistically, emodin inhibits sterol regulatory element-binding protein-2 (SREBP-2) transcriptional activity, which suppresses cholesterol biosynthesis and oncogenic protein kinase B (AKT) signaling. Additionally, attenuated cholesterol synthesis and oncogenic AKT signaling inactivated signal transducer and activator of transcription 3 (STAT3), an oncogenic transcription factor. Furthermore, emodin synergistically increased cell cycle arrest in the G1 phase and apoptotic cells in the presence of sorafenib. Animal models xenografted with HepG2 or SK-HEP-1 cells also showed that the combination of emodin and sorafenib was sufficient to inhibit tumor growth. Overall, these results suggested that the combination of emodin and sorafenib may offer a potential therapy for patients with advanced HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.