Serum kinetics, tissue distribution, and excretion of citrate-coated silver nanoparticles (AgNPs) were investigated in rabbits (n = 4) up to 28 days after a single intravenous injection. Following a single injection of AgNPs, the AUC(last) was reported to be 3.65 ± 0.68 μg·day/ml in 5 mg/kg-treated group and 0.90 ± 0.16 μg·day/ml in 0.5 mg/kg-treated group, respectively. The accumulation of silver was observed in all the tested organs including liver, kidney, spleen, lung, brain, testis, and thymus at 1 day, 7 day, and 28 day of measurement. The liver and spleen seemed to be the major targets because of high accumulation of silver. Excretion via feces and urine was also monitored during the entire experimental period. Unexpectedly, much more excretion of silver occurred via feces than through urine after an intravenous injection, which suggests biliary excretion of AgNPs. General toxicity was analyzed and histopathological changes were also evaluated.
Juvenile common carp (Cyprinus carpio) were used as a model to investigate acute toxicity and oxidative stress caused by silver nanoparticles (Ag-NPs). The fish were exposed to different concentrations of Ag-NPs for 48 h and 96 h. After exposure, antioxidant enzyme levels were measured, including glutathione-S-transferase (GST), superoxidase dismutase, and catalase (CAT). Other biochemical parameters and histological abnormalities in different tissues (i.e., the liver, gills, and brain) were also examined. The results showed that Ag-NPs agglomerated in freshwater used during the exposure experiments, with particle size remaining <100 nm. Ag-NPs had no lethal effect on fish after 4 days of exposure. Biochemical analysis showed that enzymatic activities in the brain of the fish exposed to 200 μg/L of Ag-NPs were significantly reduced. Varied antioxidant enzyme activity was recorded in the liver and gills. Varied antioxidant enzyme activity was recorded for CAT in the liver and GST in the gills of the fish. However, the recovery rate of fish exposed to 200 μg/L of Ag-NPs was slower than when lower particle concentrations were used. Other biochemical indices showed no significant difference, except for NH3 and blood urea nitrogen concentrations in fish exposed to 50 μg/L of Ag-NPs. This study provides new evidence about the effects of nanoparticles on aquatic organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.