Serum kinetics, tissue distribution, and excretion of citrate-coated silver nanoparticles (AgNPs) were investigated in rabbits (n = 4) up to 28 days after a single intravenous injection. Following a single injection of AgNPs, the AUC(last) was reported to be 3.65 ± 0.68 μg·day/ml in 5 mg/kg-treated group and 0.90 ± 0.16 μg·day/ml in 0.5 mg/kg-treated group, respectively. The accumulation of silver was observed in all the tested organs including liver, kidney, spleen, lung, brain, testis, and thymus at 1 day, 7 day, and 28 day of measurement. The liver and spleen seemed to be the major targets because of high accumulation of silver. Excretion via feces and urine was also monitored during the entire experimental period. Unexpectedly, much more excretion of silver occurred via feces than through urine after an intravenous injection, which suggests biliary excretion of AgNPs. General toxicity was analyzed and histopathological changes were also evaluated.
Toxicokinetics of zinc oxide nanoparticles (ZnONP) was studied in rats via a single intravenous (iv) injection and a single oral administration (3 mg/kg or 30 mg/kg), respectively. Blood concentrations of zinc (Zn) were monitored for 7 d and tissue distribution were determined in liver, kidneys, lung, spleen, thymus, brain, and testes. To ascertain the excretion of ZnONP, Zn levels in urine and feces were measured for 7 d. ZnONP were not readily absorbed from the gastrointestinal tract (GIT) after oral administration and were excreted mostly in feces. When the nanoparticles were injected iv to rats at a dose of 30 mg/kg, peak concentration appeared at 5 min but returned to normal range by d 2 (48 h after injection). ZnONP were distributed mainly to liver, kidneys, lung, and spleen, but not to thymus, brain, and testes. The distribution level was significantly decreased to normal by d 7. Feces excretion levels after iv injection supported biliary excretion of ZnONP. In rats injected iv with 30 mg/kg, mitotic figures in hepatocytes were significantly increased and multifocal acute injuries with dark brown pigment were noted in lungs, while no significant damage was observed in rats treated orally with the same dosage.
Combined repeated-dose toxicity study of citrate-capped silver nanoparticles (7.9 ± 0.95 nm) with reproduction/developmental toxicity was investigated in rats orally treated with 62.5, 125 and 250 mg/kg, once a day for 42 days for males and up to 52 days for females. The test was performed based on the Organization for Economic Cooperation and Development test guideline 422 and Good Laboratory Practice principles. No death was observed in any of the groups. Alopecia, salivation and yellow discolouration of the lung were observed in a few rats but the symptoms were not dose-dependent. Haematology, serum biochemical investigation and histopathological analysis revealed no statistically significant differences between control group and the treated groups. Toxicity endpoints of reproduction/developmental screening test including mating, fertility, implantation, delivery and foetus were measured. There was no evidence of toxicity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.