Over the past few years, we have been trying to build an end-to-end system at Wisconsin to manage unstructured data, using extraction, integration, and user interaction. This paper describes the key information extraction (IE) challenges that we have run into, and sketches our solutions. We discuss in particular developing a declarative IE language, optimizing for this language, generating IE provenance, incorporating user feedback into the IE process, developing a novel wikibased user interface for feedback, best-effort IE, pushing IE into RDBMSs, and more. Our work suggests that IE in managing unstructured data can open up many interesting research challenges, and that these challenges can greatly benefit from the wealth of work on managing structured data that has been carried out by the database community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.