BackgroundThe immature granulocyte count has been reported to be a marker of infection and sepsis. The difference in leukocyte subfractions (delta neutrophil index, DNI) in ADVIA 2120 reflects the fraction of circulating immature granulocytes in the blood. This study evaluated the clinical utility of DNI as a severity and prediction marker in critically ill patients with sepsis.MethodsOne hundred and three patients admitted to the medical intensive care unit with sepsis were studied. DNI (the difference in leukocyte subfractions identified by myeloperoxidase and nuclear lobularity channels) was determined using a specific blood cell analyzer.ResultsForty four patients (42.7%) were diagnosed with severe sepsis/septic shock. Overt disseminated intravascular coagulation (DIC) occurred in 40 (38.8%). DNI was significantly higher in patients with severe sepsis/septic shock and overt DIC than in patients without (p < 0.05). DNI correlated with DIC score (r = 0.54, p < 0.001). We observed a monotonic increase in the proportion of overt DIC and severe sepsis/septic shock associated with increasing quartiles of DNI (p < 0.001). A DNI value > 6.5% was a better indicator of severe sepsis/septic shock than C-reactive protein, lactate, white blood cell count, and absolute neutrophil count (sensitivity, 81.3%; specificity, 91.0%; positive predictive value, 88.6%; and negative predictive value, 84.7%). In 36 (82%) of the 44 patients with severe sepsis/septic shock, DNI values were already elevated up to 12 hours before the onset of organ/circulatory failure.ConclusionsDNI may be used as a marker of disease severity in critically ill patients with sepsis. High levels of DNI may help to identify patients with an impending risk of developing severe sepsis/septic shock.
Motivation: Recent improvements in high-throughput Mass Spectrometry (MS) technology have expedited genome-wide discovery of protein-protein interactions by providing a capability of detecting protein complexes in a physiological setting. Computational inference of protein interaction networks and protein complexes from MS data are challenging. Advances are required in developing robust and seamlessly integrated procedures for assessment of protein-protein interaction affinities, mathematical representation of protein interaction networks, discovery of protein complexes and evaluation of their biological relevance. Results: A multi-step but easy-to-follow framework for identifying protein complexes from MS pull-down data is introduced. It assesses interaction affinity between two proteins based on similarity of their co-purification patterns derived from MS data. It constructs a protein interaction network by adopting a knowledgeguided threshold selection method. Based on the network, it identifies protein complexes and infers their core components using a graph-theoretical approach. It deploys a statistical evaluation procedure to assess biological relevance of each found complex. On Saccharomyces cerevisiae pull-down data, the framework outperformed other more complicated schemes by at least 10% in F 1 -measure and identified 610 protein complexes with highfunctional homogeneity based on the enrichment in Gene Ontology (GO) annotation. Manual examination of the complexes brought forward the hypotheses on cause of false identifications. Namely, co-purification of different protein complexes as mediated by a common non-protein molecule, such as DNA, might be a source of false positives. Protein identification bias in pull-down technology, such as the hydrophilic bias could result in false negatives.
BackgroundEpidemic outbreaks of multi-drug resistant (MDR) Acinetobacter baumannii (AB) in intensive care units (ICUs) are increasing. The incidence of MDR AB bacteremia, which develops as a result of colonization, is increasing through widespread dissemination of the pathogen, and further colonization. We sought to determine risk factors for MDR AB bacteremia in patients colonized with MDR AB in the ICU.MethodsWe conducted a retrospective, observational study of 200 patients colonized with MDR AB in the ICU at Severance Hospital, South Korea during the outbreak period between January 2008 and December 2009.ResultsOf the 200 patients colonized with MDR AB, 108 developed MDR AB bacteremia, and 92 did not. APACHE II scores were higher in bacteremic than non-bacteremic patients at the time of ICU admission and colonization (24.0 vs. 21.6; P = 0.035, 22.9 vs. 16.8; P < 0.001, respectively). There was no difference between the two groups in the duration of time from ICU admission to colonization (7.1 vs. 7.2 days; P = 0.923), but the duration of time at risk was shorter in bacteremic patients (12.1 vs. 6.0 days; P = 0.016). A recent invasive procedure was a significant risk factor for development of bacteremia (odds ratio = 3.85; 95% CI 1.45-10.24; P = 0.007). Multivariate analysis indicated infection and respiratory failure at the time of ICU admission, maintenance of mechanical ventilation, maintenance of endotracheal tube instead of switching to a tracheostomy, recent central venous catheter insertion, bacteremia caused by other microorganism after colonization by MDR AB, and prior antimicrobial therapy, were significant risk factors for MDR AB bacteremia.ConclusionsPatients in the ICU, colonized with MDR AB, should be considered for minimizing invasive procedures and early removal of the invasive devices to prevent development of MDR AB bacteremia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.